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Day 27: Tuesday, 4/25/2017 
Return Homework.  Take Questions on 9.2. 
 
Recap: 
1. We lump together sets that are linked by a bijection, saying that they have equal cardinality. 
2. Sets that have equal cardinality with Գ are described as countably infinite, and we say they 

have cardinality Յ0. 
3. Some examples of countably infinite sets: Գ, 2Գ, aԳ for any natural number a, the integers, 

the even integers, equivalence classes modulo n for any n, the positive rationals, and all the 
rationals. 

4. Unions of countably many countably infinite sets are countably infinite.  The Cartesian 
product of finitely many countably infinite sets is countably infinite. 

5. And yet, there are sets that infinite but not countably infinite. 
 

Overview of today’s material: 
1. The real numbers is infinite but not countably infinite. 
2. For any infinite set A, the power set ℘(A) has a different cardinality from A. 
3. We can define Card(A)  Card(B) provided A is equivalent to some subset of B.  Then we 

say that Card(A) < Card(B) provided  Card(A)  Card(B) but Card(A)  Card(B). 
4. With this definition, we see that for any set A, Card(A) < Card(℘(A)). 
5. If  Card(A)  Card(B) and Card(B)  Card(A) does that imply Card(A) = Card(B)?  That 

seems like a plausible conclusion, but it is not self evident from the definitions.  
Nevertheless, this is a famous result from set theory, the Cantor-Schröder-Bernstein 
Theorem.  It is a powerful tool for proving two sets are equivalent. 

 
Cardinality of the interval (0,1) is uncountable. 
1. This set is infinite because for example, f (x) = x/2 is a bijection onto the proper subset 

(0,1/2). 
2. We have to show there is no bijection from Գ		to (0,1) .  We take an indirect approach.  We 

prove:  For any function f : Գ  (0,1), range(f )  (0,1).  Thus f is not a bijection.  Since this 
is true for all such functions, no bijection from Գ to (0,1) can exist. 

3. To show that range(f)   (0,1), it suffices to show the existence of a number z in (0,1) that is 
not equal to f (n) for any n in Գ. 

4. Before doing so, a short digression regarding decimal expansions. 
a. every real number in (0,1) has a decimal expansion of the form 

      .d1d2d3d4 … 
where each dj is a decimal digit. 

b. This is really a statement about infinite series.  We interpret .d1d2d3d4 …  to mean 
∑ ௝݀10ି௝
ஶ
௝ୀଵ . 

c. This form is valid for finite decimals – we simply tack on an infinite string of zeros after 
the last nonzero digit. 



 82 

 82 

d. The infinite decimal .9999…   is also equal to 1.000…  More generally, any decimal 
expansion of the form .d1d2d3d4 …dm9999…  , where we assume that dm  9 is also equal 
to to the decimal .d1d2d3d4 …(dm + 1)0000…  .  These results can be used by analyzing 

the infinite series ∑ 9 ∙ 10ି௝ஶ
௝ୀଵ ൌ 9∑ 10ି௝ஶ

௝ୀଵ ൌ .9	 ∑ 		.1௝ஶ
௝ୀ଴ ൌ 	 .9	

ଵ

ଵି.ଵ
 = 1. 

e. We define a normal decimal expansion to be one that does not end in an infinite string of 
9’s.   Then every number in (0,1) has a normal decimal expansion.  Moreover, two 
numbers can have the same normal decimal expansion iff the two numbers are equal.  
That is, two normal decimal expansions .d1d2d3d4 …   and  .e1e2e3e4 …  are equal iff for 
every natural number j, dj = ej. 

5. Now we can proceed with our proof.  Consider any function f : Գ  (0,1), and for each 
natural number k, express f (k) as a normal decimal expansion with the following notation: 
  f (k) =.dk :1dk :2dk :3dk :4 … . 
That is, the jth digit of the normal decimal expansion of f (k) is dk : j . 

6. Next we define the decimal expansion a number z = .e1e2e3e4 … according to this rule: 

݁௞ ൌ ൜
5, ݀௞∶	௞ ് 5
6, ݀௞∶	௞ ൌ 5	. 

7. Now let k be any element of Գ.  Then the kth digit of z cannot equal the kth digit of f (k), 
because by our rule when the kth digit of f (k) is 5, the digit ek = 6, and  when the kth digit of 
f (k) is not 5, then ek  is 5.  Thus, z cannot be equal to f (k).  And since k is an arbitrary 
element of x, z is not in the range of f – it is not equal to f (k) for any k in the domain. 

8. Thus we have shown that the f under discussion is not a surjection, and hence not a bijection.  
Since f is an arbitrary function from Գ to (0,1), no such function can be a bijection.  This 
proves that card((0,1))  card(Գ). 

 
Cardinality of the continuum. 
1.  We know that card((0,1)) is different from Յ0.  But we do not know (yet) whether it is the 

next infinite cardinal after Յ0.  So let us denote this new cardinality with the symbol c. 
2. We can easily see that every finite open interval (a, b) has the same cardinal as (0,1) by 

defining a linear function taking 0 to a and 1 to b.  That will be a straight line through the 
points (0, a) and (1, b) in the xy plane, and so it has slope b – a and y intercept a. The 
equation for this function is f (x) = (b – a)x + a. 

3. As a specific example, take a = -1 and b = 1.  Then the function is f (x) = 2x – 1, and we can 
see using methods of calculus that this is a bijection from the interval (0,1) to the interval  
(-1,1). 

4. Now consider the function ݃ሺݔሻ ൌ 	
ଵ

ሺଵି௫ሻ
െ

ଵ

௫
 with domain (0,1) and codomain Թ.  This is 

actually a bijection, as can be shows with methods of calculus.  The derivative is positive for 
x in (0,1), so the function is increasing and therefore an injection.  Considering the limiting 
values as x approaches 0 from above or 1 from below, also shows that f is a surjection.  
Thus, we see that (0,1) and Թ have the same cardinality.   The symbol c stands for 
continuum, meaning the real line, and c is known as the cardinality of the continuum. 
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Cantor’s Theorem: Card(A)  Card(℘(A)). 

1. If A is a finite set with cardinality n , then we know that card(℘(A)) = 2n.  So in this case 
Card(A)  Card(℘(A)).   
 

2. But what about for an infinite set?  We know that an infinite set can be equivalent to a 
proper subset, so maybe it is possible for the power set of A to be equivalent to A. 

3. NO: Cantor’s theorem shows this.  In fact, the proof is reminiscent of both the proof that 
(0,1) has a different cardinality than Գ, and also the proof that there cannot be a set of all 
sets. 
a. Again, we take an indirect approach.  We will prove, for any function f : A  ℘(A),   

f cannot be a surjection.   
b. Notice that we can think of f as a set of ordered pairs (a, f (a)) where a can be any 

element of A, and f (a) must be some subset of A. 
c. In some cases, it may happen that a ∊ f (a).  And in other cases it might turn out that  

a  f (a).  Let’s agree to call a an inside element if a is inside f (a), and call a an outside 
element if a is not inside f (a).  For a given function f there may be no inside elements, or 
no outside elements. 

d.  We use this idea to define a special subset of A, the outside set for f.  That is, we define  
Z = {all outside elements for f } =  {a ∊ A | a  f (a)}. 

e. Now we can show that Z is not in the range of f .  We argue by contradiction.  Suppose 
that Z IS in the range of f.  Then there must be some element z in A such that f (z) = Z.  
Now there are two possibilities.  Either z is an inside element or it is an outside element.  
But each of these possibilities leads to a contradiction.  For, if z is an inside element, then 
z ∊ f (z).  But f (z) = Z = {all outside elements for f }.  Thus, z must be an outside element.  
This contradicts the assumption that z is an inside element. 
 
On the other hand, if z is an outside element, then by definition, z is outside f (z), or 
equivalently, z  f (z).  But f (z) = Z =  {all outside elements for f }.  Thus  
z  {all outside elements for f } so z is not an outside element.  That contradicts the 
assumption that z is an outside element. 
 
In either case, we reach a contradiction.  This shows that it is impossible for Z to equal  
f (z) for any z in A.  That proves that f is not a surjection.  And since f is an arbitrary 
function from A to ℘(A), no such function can be a surjection.  This shows that there is 
no bijection f : A  ℘(A).  In particular, card(A)  card(℘(A)). 
 

4. This means we can form a chain of sets:  Գ, ℘(Գ), ℘(℘(Գ)), ℘(℘(℘(Գ))), etc.  No two 
consecutive elements in the chain can have the same cardinality.  And in fact these all have 
different cardinalities, though it requires a little work to prove that.  Indeed, we can define an 
ordering on these infinite cardinals such that each set has a smaller cardinality than its own 
power set.  Thus, we can conclude that there is an infinite chain of increasing cardinalities.  
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So there are infinitely many different sizes of infinite sets, and there is no largest size of 
infinite set.  A powerful tool for developing these (and other) ideas in the Cantor-Schröder-
Bernstein Theorem.  We look at the next. 
 

The Cantor-Schröder-Bernstein Theorem 

1. Statement: Suppose A and B are sets, and that there exist injective functions f : A  B and  
g : B  A .  Then there exists a bijection   h : A  B . 
 

2. An application: card((0,1)) = card((0,1]). 
a. This seems obvious but is difficult to prove by direct construction of a bijection 
b. The earlier proof we saw with countable sets, where we just stick in one additional 

element is not valid (without developing a lot more machinery) because we cannot create 
a roster for an uncountable set. 

c. To prove this using CSB theorem, define f : (0,1)  (0,1] with equation f (x) = x, so that f 
is the identity function.  This is clearly an injection.  Also, define g: (0,1]  (0,1) 
according to the equation g(x) = x/2.  Again, this is easily seen to be an injection.  Now 
the CSB theorem tells us that a bijection exists, although we are given no guidance in 
how to find one. 

d. Actually, understanding the proof of the CSB provides a way to actually construct the 
bijection, but it is a little complicated. 

e. Here is one bijection.  We separate (0,1) into two sets.  The first set is all the fractions of 
the form 1/n with n in Գ.  This set is {1/1, 1/2, 1/3, 1/4, 1/5, etc}.  The other set is all the 
elements of (0,1) that are not in the first set.  Now we can define a bijection  
h: (0,1]  (0,1) as follows. 

݄ሺݔሻ ൌ ൞
,ݔ 	ݔ ∉ 	 ൜1,

1
2
,
1
3
,
1
4
,⋯ ൠ

1
݊ ൅ 1

, ݔ ൌ
1
݊
	for	some	݊ ∈ Գ

	. 

f. This is a bijection, though you have to think about it a little bit. 
 

3. Suppose you have a cycle of injections like so: 

଴ܣ
௙బ
→ ଵܣ

௙భ
→ ଶܣ

௙మ
→ ⋯

௙೙షమ
ሱۛሮ ௡ିଵܣ

௙೙
→  .଴ܣ

Then, because compositions of injections are injections, we have an injection from any 

member of the cycle to any other member.  For example, ܣ଴
௙బ
→ ଵܣ

௙భ
→  ଶ gives us an injectionܣ

from A0 to A2, and ܣଶ
௙మ
→ ⋯

௙೙షమ
ሱۛሮ ௡ିଵܣ

௙೙
→  ଴ gives us an injection from A2 to A0.  By the CSBܣ

theorem, that proves there is a bijection from A2 onto A0, so card(A2) = card(A0). 
4. We can apply this to the chain Գ, ℘(Գ), ℘(℘(Գ)), ℘(℘(℘(Գ))), etc.  Note that every 

adjacent pair is of the form B, ℘(B).  There is an obvious injection for any such pair, from B 
to ℘(B):  for every b in B, define f (b) = {b}.  That is, the image of any element b is the 
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iii. Third, we may have a chain that begins with an element in B that is not in the range of f.  
This is similar to the prior case, but the starting point is in B rather than in A.  A chain 
of this type can be diagrammed in the form b1  a2  b3  a4      . 

iv. Finally, there may be chains that extend infinitely far in both directions.  This type of 
chain occurs if we start with an initial value and propagate the chain forward without 
ever hitting a repetition, and also if every element in the chain is either in the range of f 
or in the range of g, so that from any element in the chain it is possible to propagate it to 
the left.  Such a chain can be diagrammed as   
   an  bn+1  an+2  bn+3  an+4      
 

e. Now these equivalence classes partition A  B, and in particular each element of A can 
be in only one such class.  If a is in a class of type iii, then it is not the first element in the 
chain, and so we can find a unique preceding element b in the same chain.  We define 
that b to be h(a).  In other words, for a’s in an equivalence class of type iii, the effect of h 
is to move one position along the chain from a in the opposite direction from the arrows.  
In all other cases, we define h(a) = f (a).  In these cases, the effect of h is to move along 
a’s chain one position in the same direction as the arrows.  Since every element of A is in 
some chain, and since we have defined the effect of h on every chain, we have in fact 
defined a function from A to B.  It is an injection because in each case we have only one 
choice for h(a).  To see that it is a surjection, consider any b in B.  If b is in a class of type 
iii, then there is always an element a of A to the right of b, and b = h(a) for that a.  Thus 
every b in a type iii class is in the range of h.  In all the other classes, every b has an 
element a to the left, and by definition, b = h(a) for that a.  This shows that h is a 
surjection, and hence a bijection. 

 
End of Day 
 
  


