\qquad

The following formulas might be useful on this quiz.

$$
\begin{array}{ccc}
a_{n+1}=a_{n}+d & a_{n+1}=a_{n}+d+e n & a_{n+1}=r a_{n} \\
a_{n}=a_{0}+d n & a_{n}=a_{0}+d n+e\left(\frac{(n-1) n}{2}\right) & a_{n}=a_{0} r^{n} \\
x=-b / 2 a & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & a(t)=a_{0} r^{t / d} \\
b=e^{\ln b} & b=10^{\log b} & b^{x}=c \text { if } x=\frac{\log c}{\log b}=\frac{\ln c}{\ln b}
\end{array}
$$

1. It is a fact that $4=8^{2 / 3}$. Use this fact to express the equation $y=2500(4)^{2 t}$ in a form involving an exponential function with base 8. (The base is the number that has the exponent. So the original equation has a base of 4.)
2. A geometric growth model for a radioactive element has the equation $P=5000(.5)^{t / 28.1}$. Express this equation in another form so that the exponential function has 10 as the base.
