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Introduction 

Existence results are familiar to inatheinaticians, who understand their theoretical 
significance. But others, including students, are soinetiines perplexed by existence 
results. "Wllat good is it to know soinethiilg exists," they wonder, "\vl~en you have no 
idea how to find it?" The ultimate answer depends on soine intrinsic appreciation of 
abstract mathematics-not all of inatheinatics can or should be justified on the basis 
of practical application. Still, abstract existence results soinetinles have practical 
consequences, as this paper aims to deinonstrate. Though the focus is on existence 
results, the demonstration itself is constructi\le: I will describe a problein I worked on 
in the aerospace industry that inade thoroughly practical use of an existence result. 
Specifically, an existence t11eoren-1 associated wit11 the inarriage problein for bipartite 
graphs was applied to a satellite coininunications network, inatching orbiting satellites 
with ground stations. A briefer account, ~vhich oinits illost of the inatheinatical details, 
can be found in [2]. 

The allocation problem 

The problenl setting is a preliminaiy design study for a satellite coininuilication 
system. Many variables influence the design of such systems: the nuinber of satellites, 
the orbits they occupy, details of the coininunications equipment, power require- 
ments, etc. Normally, the coinplete set of satellite orbits, referred to as a constellation, 
is considered in total, rather than focusiilg on individual orbits one at a tiine. 
I was part of a teain studying the effects of the constellation design on system 
performance. 

For this preliiniilaiy design study we used highly idealized models. The earth is 
represented by a sphere rotating uniformly once eve17 24 hours about a fixed axis 

FIGURE 1 

Geometrical model. 
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through the poles. Satellites and radio stations on the ground are points, specified in a 
Cartesian coordinate frame. The origin of the coordinate frame is at the center of the 
earth; the equator lies in the xy-plane; the axis of rotation is the z-axis. In this system, 
satellites travel in Keplerian orbits dictated by an inverse square force law, and we can 
calculate each satellite's position at any time. The ground-based radio stations move 
with the rotating earth, so they can also be located at any time. The operational 
deinands on the system are assunled to be constant, with each station handling a fixed 
volume of message traffic in any 24-hour period. 

Visibility The concept of visibility is crucial to the model. A satellite and radio 
station are visible to one another if they can coininunicate. In the simplest inodels 
visibility is interpreted literally, as an unobstructed line of sight. More complicated 
models take into account the geometry of the station and satellite, as well as physical 
constraints on radio transmission. These can include signal loss due to atmospheric 
conditions, and the sensitivity of antennas to the direction of arrival of a signal. 

In these more complicated models, visibility is described in geometric terms. For 
example, we envision the antennas on board satellites and fixed to the ground as 
having a conical field of view. An arriving signal inust fall within the cone to be visible. 
In inore elaborate inodels the field of view call be inore complicated than a simple 
cone, as sl~owvn in exaggerated form in FIGURE2. TO be visible from a station in the 

FIGURE 2 

Visibility constraints. 


figure, a satellite inust be \vithin the antenna's cone, but also above the inountains to 
the west. In this case we can define visibility as follo\vs: Project the line joining the 
satellite and station onto the local horizontal plane at the station, thereby defining the 
satellite's heading. Measuring clochi4se froill due north, for headings between 250 
and 320 degrees the satellite's elevation inust be at least 25 degrees. For any other 
heading, the satellite is visible if its elevation is at least 5 degrees. 

In all of these models, visibility is determined by siinple geoinetrical relationships. 
At any specific time, using the instantaileous positions of the satellite and radio 
station, as well as the geoinetric constraints, one can calculate using vector analysis 
whether the satellite is visible to the station. To obtain an overview of the system's 
behavior, the calculations are repeated for inany specific times, defining a discrete 
time nzodel. 
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Discrete time model Although satellite and earth motions are continuous, it is 
reasonable to analyze thein by consideriilg a discrete set of tiines. Assume, for 
instance, that the visibility coinputations are performed once for each iniilute of the 
simulation. Assume, too, that a satellite can coininunicate for one ininute with any 
radio station that is visible, but only with one station during that minute. On the other 
hand, each radio station call coininunicate with several satellites at once. (This 
asyininetiy reflects the fact that we can position inultiple receivers and transmitters on 
the ground at little expense, while resources on satellites are veiy limited.) 

Our inodel also includes a predefined quota of connect-time for each radio station. 
These quotas are based on a projected voluine of coinn~unications traffic at each 
station and inay differ froin station to station. The first station nlay require 90 ininutes 
of connect-time during the simulation, the next station 30 ininutes, and so on. Now we 
can state the fundamental problein: 

ALLOCATION PROBLEM. At  each time step, assign each satellite to  one 
visible raclio station so tlzat, over the course oftlze s i i~~z~la t ion ,  each statiotz 
achieves its quota of connect-tirne. 

Graph theory formulation 

The allocation problein inay be reforinulated in terins of graph theoiy. To begin, 
consider FIGURE 3, which sho\vs a satellite at three different times, and several radio 

FIGURE 3 
Visibility for several time steps 

stations. Tlle lines represent \risibility: at 9:10 the satellite is visible to Seattle, San 
Francisco, Los Angeles, and Chicago. By 9 2 5  the satellite has lost sight of Seattle and 
San Francisco, but call now see Washington, DC. 

It is natural to abstract away the geographical map, leaving only a bipartite graph 
(FIGURE4). There are h ~ 7 0  sets of vertices, or nodes: one set for the satellite at different 
tiines and the other for radio stations; each edge joins a vertex in one set to a vertex in 
the other. 

The siinple example of FIGURE 4 shows how the allocation problein is reforinulated 
using graph theory. Define a bipartite graph 17, the uisibility graph, as follows: (i) 
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sat 1 sat 1 sat 1 

9:lO 9:25 9:40 

LA 
F I G U R E  4 

Sarn~levisibility graph. 

assign one vertex to each radio station; (ii) assign one vertex to each satellite at each of 
the discrete time steps; (iii) let there be an edge between the vertex for satellite s at 
time t and radio station r if and only if s and r are visible to one another at time t .  
This produces a bipartite graph, with vertices divided into two groups: satellite-time 
(ST)-vertices and radio station (R)-vertices. 

A conlputer simulation is used to determine V. At each time step, positions are 
computed for each radio station and each satellite, and used to determine wvllich 
satellites are visible to which radio stations. A typical simulation might involve 24 
hours (1440 minutes), 10 satellites, and 10 radio stations. This produces over 14000 
ST-vertices, only 10 R-vertices, and up to 140000 edges in the visibility graph-a 
result far inore coinplicated than FIGURE 5 coines a little closer to the 4 depicts. FIGURE 
true situation, but it is clearly hopeless to portray anything like the true complexity of 
the 

Satellite-Time Step (ST) Vertices 

Radio Station (R) Vertices 


FIGURE 5 

Detailed visibility graph. 
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Assignment subgraphs Part of the allocation problein is to assign each satellite at 
each tiine step to just one radio station. In the graph-theoretic formulation, that 
means selecting just one edge emanating from each ST-vertex, thus defining a 
subgraph, ~vllich we call an assignment subgraph. The bold lines in FIGURE G SIIOLVone 
possible assigninent subgraph for the graph of FIGURE 5. 

Satellite-Time Step (ST) Vertices 

8 6 6 1 1  4 14 8 9 1 2 6  
Radio Station (R) Vertices with 


Connect Time Requirements 


FIGURE 6 
Assignlnent subgraph. 

The number of edges in a graph G incident at a vertex u is called the degree of u 
in G, and denoted deg(u, G). An assigninent subgraph A of the visibility graph V is 
thus characterized by the requirement that deg(st, A) I1for every ST-vertex st. 

The assigninent problem has another requirement: each radio station must be 
connected to satellites for a predetermined quota of minutes. In the assignment 
subgraph, each edge represents one minute of connect-tiine. Thus the connect-time 
quota for a radio station r dictates a minimuin number of incident edges (i.e., the 
degree) at r in the assigninent subgraph. 

Connect tiine quotas are shown for each R-vertex in FIGURE 6. The assigninent 
subgraph sho\vn clearly fails to satisfy the allocation problein because, for example, 
the first R-vertex has 3 incident bold edges-less than the quota of 8. 

We can now state the allocation problem in graph-theoretic terms. 

ALLOCATIONGRAPHPROBLEM:Given a visibility graph V and a connect-time quota 
q ( r )  for each R-uertex, find an assignment sz~bgmph A such that deg(r, A) 2 q ( r )  
for every A-vertex r. 

It is not obvious at the outset whether this lund of problem is solvable. Next we will 
develop some necessary conditions for solvability. These conditions will lead to an 
existence theorem-our desired existence result-that characterizes the solvability of 
allocation graph problems. 

Necessary conditions 

It is easy to see that the sample assignment subgraph in FIGURE G does not solve the 
allocation problem, but it is less obvious whether any solution exists. A closer look at 
FIGURE6 reveals that each R-vertex l ~ a s  far too few incident bold lines. This suggests 
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that, no matter how we rearrange the assignments, we will be unable to fill the quota 
at each R-vertex. This is indeed so, and there is a simple proof. Do you see it? 

Because at most one edge in the assignment subgraph can meet each ST-vertex, the 
total nuinber of edges cannot exceed the nuinber of ST-vertices, 36. The allocation 
problein requires enough bold edges to inatch the nuinber beneath each R-vertex. 
Since the sum of those numbers is much greater than 36, the number of bold edges 
available, this allocation problein is unsolvable. 

The actual simulations that I worked with had much inore coinplicated graphs than 
that in FIGURE6,  but the same reasoning applies. If the total nuinber of ST-vertices is 
less than the suin of all the connect-time quotas, then the allocation problein will be 
unsolvable. This gives a necessary condition for solvability: The sum of all the 
connect-time quotas q ( r )  cannot exceed the nuinber of ST-vertices. 

Other necessary conditions arise just as 7, fornaturally. The graph in FIGURE 
instance, adinits no solution to the allocation problem, because only one edge in I7 is 

Satellite-Time Step Vertices 

Station Vertices with 

Required Connections 


FIGURE 7 
Required degree too high at one station 

incident at the second R-vertex, but the allocation problein requires two edges there. 
This suggests a second necessary condition for the allocation problein to be solvable: 
q ( r )  r deg(r ,V)  for every R-vertex r. 

FIGURE8 illustrates yet another unsolvable allocation problein. As before, a general 
principle is at work, but this time a little more subtly. To see how it worlts, consider 

Satellite-Time Step Vertices 

1 2 2 
Station Vertices with 

Required Connections 

FIGURE 8 
Total required degrees too high for a set of stations. 
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only the part of the graph that involves the first and last R-vertices. If we ignore the 
middle R-vertex, we may as well ignore the two nliddle ST-vertices as well. T'l'hat 
reniains are hvo ST-vertices, hilo R-vertices, and 4 edges. The allocation problenl is 
clearly unsolvable in this subgraph, for the suin of the required degrees (3 ) exceeds 
the nuinber of ST nodes (2). Since the allocation problein canilot be solved for this 
subgraph, it cannot be solved for the original graph either. 

A unifying principle The preceding exanlple illustrates a inore general principle. 
For any subset E of the R-vertices, consider the subgraph 17, consisting of the edges 
that touch eleinents of E, together with the endpoints of these edges. Let Ns,(17E) be 
the number of ST-vertices in 17,. For the original allocation problem to be solvable, 
we inust have, for every non-empty subset E of R-vertices, 

Note that this one principle subsuines both of the preceding examples. If E is the full 
set of R-vertices, then TiE = 17, and the corresponding necessaiy coildition is ~vllat was 
presented in the first example. If E = { r ) ,for any single R-vertex, the11 Ns,(17E) = 

deg(r,V),  and the necessaiy condition is as in the second example. 

Satellite-Time Step Vertices 

2 1 1 

Station Vertices with 

Required Connections 


FIGURE 9 
Requlred degrees feasible. 

FIGURE9 shows a graph in \vhich the allocation problein is solvable. It is easy to 
checl< that the condition (1)holds for every possible E. 

The existence theorem 

The necessity of the solution condition (1) should now be intuitively clear. T'1711at is less 
clear, but still true, is that the solution condition is also sufficient: If (1) holds for 
eveiy noneinpty set E of R-vertices, then a solution to the allocation problenl exists. 
This result is equivalent to Hall's t l~eorein ,~ a classical result in graph theoiy. Hall's 

' ~ c c o r d i i l ~to [3],Pliilip Hall decluced the result as a theol.em in set theoiy in 1935 
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theorein is often cited in the context of the so-called 17znrriage problenz; in [4, p. 1,591, 
the result is labeled Hall's Mnrringe Tlzeoren~. 

The inarriage problein is a special case of the allocation problein, with q ( r )  = 1for 
evei-y r. In its traditional formulation, the R-vertices represent maidens, the ST-vertices 
represent bachelors, and an edge indicates that a particular bachelor and maiden are 
acquainted wit11 each other. The problein is for each bachelor to propose inarriage to 
just one inaiden in such a \yay that each inaiden receives at least one proposal. It is 
assumed that there are just as many bachelors as maidens. Hall's theoreill asserts that 
a solution exists if and only if evei-y set of lc inaidens is connected to a set of at least lc 
bachelors. 

This condition is clearly necessai-y: if any k maidens are connected to fewer than k 
bachelors, there will not be enough bachelors to go around. Sufficiency may be 
proved by illduction on the number of bachelors (and maidens). Briefly, the induction 
step can be handled by considering hilo cases. In the first case, each set of k maidens 
is connected to a set of at least lc + 1bachelors. In this case, we inatch one bachelor 
to one maiden, and the induction hypothesis iinplies that everyone else can also be 
matched up. In the second case, some set of k inaidens is connected to exactly k 
bachelors. In this case \ye first argue (by induction) that these k inaidens and 
bachelors can be paired, and then argue (again by induction) that the remaining 
matches can be made as well. 

The satellite allocation problein can be reduced to a inarriage problem as follows. 
Create a new graph Ti,, by creating q ( r )  duplicate vertices for each R-vertex r ;  each 
of these q ( r )  vertices is connected by an edge to each ST-vertex that r was connected 
to in the original graph. If the marriage problein can be solved in Ti,, , then we will 
have q ( r )  ST-vertices matched with the duplicate vertices for r ;  this specifies how to 
assign ST-vertices to r in V. 

\Ve inust also assure that the nuinber of R-vertices equals the number of ST-vertices 
in I!,,. Obseive that if there are too few ST-vertices, the original problein is not 
solvable. If there are too many ST-vertices, we can simply add enough R-vertices to 
make the two sets compatible, and assume that each of these new R-vertices is 
connected to every ST-vertex. 

No\v we see that the condition defined by (1) translates into the necessai-y and 
sufficient condition for solvability of the inarriage problein. A solution to the inarriage 
problem, l~owever, induces a solution to the satellite allocation problem. It inay 
happen that in forinulating the inarriage problein, some extra R-vertices were added. 
In this case, the inatches of these extra R-vertices with ST-vertices in the solution of 
the inarriage problein will be discarded in translating back to the satellite allocation 
problem. But the result will still be an assignment subgraph that meets all the 
connection-time quotas. 

\Vith (1) established as a necessary and sufficient condition for solvability of the 
allocation graph problem, deciding Lllether a satellite constellation is capable of 
meeting its performance objectives is reduced to a computation. Note that this 
computation does not provide any practical operational guidance: we still do not l aow 
how to assign the satellites to ground stations. The existence of a solution has a 
practical significance in a different direction, providing a metric of system perfor- 
mance. This idea is developed next. 

A practical use for existence 

The allocation problein arose in the consideration of various satellite constellations for 
a conlilluilications system. The existence result provided a way to coillpare different 
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constellations. Beyond the simple obseivation that for some constellations the alloca- 
tion problein is solvable and for others it is not, the existence result led to the 
determination of an optiinal data transillission rate for each constellation. Here is how 
it worked. 

First, the calculations necessav to checl< the conditions for solvability were incorpo- 
rated into the computer siinulation. With N R-vertices, there are 2-\' - 1 nontrivial 
choices for E; for each, it is necessary to tabulate the number of ST-vertices 
connected to E. Although the dependence on N is exponential, N was sinall enough 
in our probleills to perinit a direct calculation in reasonable tiine. 

There are well-knowvn algorithirns for solving graph matching probleins by reducing 
them to flow optiinization p rob lems .~o \vever ,  for the visibility graphs encountered 
in the satellite design problein, these algorithms require more calculations (by several 
orders of magnitude) than siinply checking the necessav and sufficient conditions for 
solvability. Thus, it was feasible to compute wllether a solution existed-but not to 
find a solution. 

Second, to the degree of accuracy of the model, it is reasonable to assume that the 
values cl(r) are inversely proportional to the rate of data transmission. 
For example, doubling the transmission rate should halve the ainount of connect 
tiine required. 

As a general rule, faster data transinission is more expensive. This is certainly so for 
coillputer inodeins, and it applies even inore stringently to satellites. The intrinsic cost 
of faster data rates is coillpounded by increased power requirements, \vhich generally 
translate into greater weight and coinplexity of the satellite. So it is of interest to 
estimate the nliniillal feasible data rate for a satellite constellation, defined as the 
lowest data rate for \vllich the assigninent problem is solvable. 

Note here that changing the data rate has no effect on the visibility graph-it 
siinply increases or reduces the values of the cl(r). If a very high data rate is set, the 
values of the cl(r) will be low, and it is likely that the allocation problein can be 
solved. \Vith a low data rate, the allocation problein is harder to solve. 

Here, then, is how to estimate the illinillla1 feasible data rate. Run the simulation 
once to coinpute 17.'Select an initial choice for the data rate and, using the existence 
result, deterinine wihether the allocation probleill is solvable. If it is, lower the 
transillission rate; othei~vise, raise the transinission rate. Then check the conditions for 
solvability again. Repeating this process a few times will usually establish the ininiinal 
feasible transnlission rate within a few percent. 

Conclusion 

Ultimately, the minimal feasible transniission rate becaine just one of inany criteria 
that were used to coillpare competing satellite systein designs. I spent considerable 
time running the siillulation and coinputing the optiinal transillissioil rate for many 
satellite constellations, and that contributed to a inuch larger tradeoff analysis. In the 
process, solutions to satellite allocation probleins were neither desired nor obtained. 
Much later in the design process, algorithms would have to be developed to actually 
assign the satellites to coinillunicate wit11 particular radio stations at particular times, 
and in all lilzelil~ood, these assigninents would not be optiinal. But at the point of the 

'see [l,41; the first of these includes an a~lalysis of the co~nputational complexity of the algorithms. 
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design process I have been describing, that level of detail was not required. Rather, 
the theoretical solvability of the optiinal allocation problein was used to determine one 
ineasure of systein perforinance. And that is how an existence result was used in a 
coinpletely practical setting. 
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Modern folklore claims that everyone on the planet is connected to everyone else through a 
relatively short chain of acquaintances. This claim was investigated by psychologist Stanley 
Milgram in the 1960s, concretized in the play and film Six Degrees of Separation by John 
Guare, and popularized in a game of trying to trace connections of actors to the actor 
Kevin Bacon through joint appearances in films. Mathematicians are familiar with a similar 
phenomenon, the ErdBs number of a mathematician. We are talking eccentricity here; in 
graph theory, the maximum distance from a particular vertex to any other vertex in a graph 
is the eccentricity of the vertex. Harris and Mossinghoff document that  the eccentricity 
of Kevin Bacon in the "Hollywood" graph is 7, which is the minimum eccentricity of any 
actor, putting Bacon into what is known as the center of the graph. Such networks are 
neither regular (every node has the same small number of links to  neighboring points) nor 
sparse (few connections relative to  the number of nodes). Strogatz and Watts showed that  
introducing a few random connections into a regular graph can greatly decrease the average 
path length between two nodes. Graphs w ~ t h  a small average path length they call small-
world networks,  and they cite as examples the neural network of the worrn C elegans, 
the power grid of the western US.,and the Hollywood graph. Small-world networks are 
important in the spread of disease, the diffusion of trade goods, and the transmissioii of 
information (including marketing over the Internet), as Peterson notes. 

PetkoviC, Miodrag, Mathematics and Chess: 110 Entertaining Problems and Solutions,  
Dover, 1998; v + 133 pp, $5.95 (P).ISBN 0-486-29432-3. 

This book uses chess and the chessboard as occasions for mostly mathematical puzzles, 
though some chess puzzles occur too. Naturally, rook polynon~ials occur, as do knight's 
tours and their generalizations, plus domino coverings, dissections, and generalized chess- 
boards. The puzzles are fun, solut,ions are provided, and the reader will see much math- 
ematics applied. There are a few references but only to specific results, rather than to 
further reading; and lamentably there is no index. 




