DAN KALMAN

alculus in Orbit

in orbitall took place on the ground.

As an applied mathematician at the
Aerospace Corporation, I worked on
computer simulations of satellite sys-
tems. These are programs that compute
the positions of satellites relative to the
earth at various times, so that questions
about communications between satel-
lites and points on the ground can be
analyzed. As you might imagine, the
methods of calculuswere indispensable
for these simulations. In fact, in one
project I relived my calculus past by
tackling a standard textbook problem:
related rates. For that project I
helped develop acomputer system using

I nterestingly enough, my experiences
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a new approach called object oriented
programming. Although at the core
this was a project in computer software,
it required a thorough understanding
of calculus.
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Related Rates with a Vengeance

Here is a related rates problem: A
satellite travelsin an elliptical orbit cen-
tered at the earth. We know how to
predict the position, velocity, and accel-
eration of the satellite at any time. As
the satellite travels along its ellipse, the
earth turns beneath it, carrying along a
tracking station ata known latitude and
longitude. The tracking station has an
antenna dish that can move like a desk
chair. Thatis, it can swivel in a complete
circle about a vertical axis, and it can
simultaneously rock backward. As the
satellite flies overhead, the satellite dish
follows it. Picture a desk chair with a

SATELITE

head brace. You are strapped in so that
your head is held in place and you can
only look straight ahead. Now swivel
and rock the chair so that you can see
the satellite as it flies past. It won’t go
straight overhead. If you sit still it will

passsomewhere to the side of yourright
shoulder. But you don’t sit still. You

turn to the rightand tip back so thatyou
are always looking right at the satellite.
That is what the antenna has to do.

Now here is the related rates part:
the antenna turns in two ways: a swivel
and a rock. For each of these motions,
determine the velocity and accelera-
tion at any time during tracking.

Differentiation:
Don t try this at home

As in most related rates problems, it
is possible to use explicit differentia-
tion to solve this problem. First, you
must write down an explicit formula for
the instantaneous swivel or rock angle
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Swivel angle and rock angle

as a function of time. Then take the
derivative, plugin the time, and presto—
you have the velocity. Another differen-
tiation gets you the acceleration. But
youwouldn’twant to do this, even using
a symbolic algebra system like
Mathematica. The equations just get too
long and involved.



oillustrate, let’s consider the rock
T angle. Freeze the satellite in its

orbit and the earth on its axis at
an instant of time. Now we know the
positions of the satellite and the track-
ing station in space. Draw a line be-
tween them. Also, at the tracking sta-
tion, draw a line pointing straight up,
along the axis for the swivel motion.
Now find the angle between the two
lines, and subtract from /2. That’s the
rock angle. The geometry can all be
transformed into calculations. In place
of drawing lines we write down vectors.
Divide each vector by its length to get
unit vectors. Take the dot product of
these vectors to find the cosine of the
angle between them. Take the inverse
cosine and subtract from 1t/2. This al-
lowsus to calculate the rock angle atany
time. The swivel angle is a little more
complicated because we need a point of
reference—say due north from the
tracking station—but is similar in na-
ture. If you go to the trouble to actually

work out the formulas for the two angles,
you will see why no one would want to
try writing down their derivatives.

Object Oriented Calculus

An alternative is provided by object
oriented programming. In this
application, we will think of each
function of time as an object. There are
two kinds of these objects. First, the
basic function objects, are directly
programmed into the system. The
functions for the satellite and tracking
station positions are examples of basic
function objects. We will call these
objects Satellite and Tracker. Second
there are composed function objects—
those that are created by combining or
operating on other function objects. In
the example above, the vector from the
tracking station to the satellite is a
composed function object, defined by
subtracting two basic function objects:
Satelliteand Tracker. Call this object the
Line-of-Sight. Here are two more
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composed function objects: the Squared-
Distanceand the Distance.We define the
Squared-Distance as the dot product of
Line-ofSight with itself, and we define
the Distance as the square-root of
Squared-Distance. Ultimately, we can
define composed function objects at

cach step along the way until we reach
objects for the Swivel-Angle and the Rock-
Angle.

Now in object oriented pro-
gramming, each object has some
information, and they all communicate
by passing messages back and forth.
For our system, each function object
knows how to compute its own value at
any time, as well as the values of the first
two derivatives. For the basic function
objects, thisinformation is programmed
in. If I send a message to the Satellite
and ask for its position and velocity at
the time 3.7, it knows how to compute
those results, and sends me the answers
back. The composed objects work a
little differently. Each composed object
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has a list of parts, that is, the function
objects that it was created from. For
example, the Line-of-Sight knows that it
was created from Satellite and Tracker.
When Line-of-Sight receives a message
asking for its value and derivative at
time 7.8, it turns around and asks each
ofits parts for the same information. To
compute its own value, Line-of-Sight
simply subtracts the values it receives
from Satellite and Tracking-Station.
Similarly, to compute its own derivative
it subtracts the derivatives it receives
from Satellite and Tracking-Station. Then
it responds to the original message by
sending back its own value and
derivative. Notice that in all cases, what
is sent in the messages and what is
operated on are numerical values. There
are no formulas in the message.
However, there is a formula in the
programming for Line-of-Sight. Since it
is a difference of two other function
objects, Line-of-Sight is programmed to
compute its derivative by subtracting
the derivatives of its parts. The rule for
the derivative of a difference is builtin.

his system can be used to find the

derivatives of very complicated

functions like Swivel-Angle and
Rock-Angle. Send a message to Rock-Angle
asking for its derivative at time 26.3. It
knows that it was defined as the
difference between two things (t/2and
Anglefrom-Vertical) soitsendsthemeach
messages asking for values and
derivatives at 26.3, and then combines
the results as it was programmed to do.
One of the objects that Rock-Angle
queries must send out a message of its
own, to get the derivative information
from its own parts. So the messages flow
from Rock-Angle back through all the
intermediate functions until the basic
functionsare reached. These knowhow
to compute their own derivatives, and
send the results forward. At each
intermediate stage, the derivatives and
values from the preceding stages are
combined in the appropriate way, until
Rock-Angle ultimately reaches the value
for its derivative.
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This entire system really depends on
a fairly small number of operations.
There are the usual operations of arith-
metic: addition, subtraction, multipli-
cation, and division, as well as some
calculator style functions such as square-
root, trigonometric functions and their
inverses, exponential functions, and so
on. These all operate on scalar function
objects. Then there are vector opera-
tions of addition, subtraction, scalar
multiplication, dot products and cross
products. The rules of differentiation,
including the chain rule, are built into
the system. For example, when a new
function objectis defined as the square-
root of an existing function object, the
system knows that the derivative will be
calculated by dividing the derivative of
the existing function by twice the square-
root of the function value, i.e.,

f'(t)

p(Vi®) =3 f10)

We build into the system the rules of
differentiation for the few operations
listed above. Then we can compute the
derivatives of any composed function
automatically, without everworking out
the formulas for the derivatives. Now
that is the way to do calculus in orbit.

Automatic Differentiation

The system described here uses ob-
ject oriented programming, but it also
uses a technique called automatic dif-
ferentiation. If you would like to learn
more about this subject, there are two
excellentarticlesyou can read. The first
is by one of the fathers of the subject,
Louis Rall. The article is: “The arith-
metic of differentiation,” Mathematics
Magazine, volume 59 no. 5, pp. 275
282, December, 1986. The second was
awarded the Poélya Prize for outstand-
ing mathematical writing. It is; “Auto-
matic differentiation and APL,” by Ri-
chard D. Neidinger, College Mathematics
Journal, volume 20 no. 3, pp. 238-251,
May 1989. &



