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Among numerical sequences, the Fibonacci numbers Fn have achieved a kind of
celebrity status. Indeed, Koshy gushingly refers to them as one of the “two shining
stars in the vast array of integer sequences” [16, p. xi]. The second of Koshy’s “shining
stars” is the Lucas numbers, a close relative of the Fibonacci numbers, about which
we will say more below. The Fibonacci numbers are famous for possessing wonderful
and amazing properties. Some are well known. For example, the sums and differences
of Fibonacci numbers are Fibonacci numbers, and the ratios of Fibonacci numbers
converge to the golden mean. Others are less familiar. Did you know that any four
consecutive Fibonacci numbers can be combined to form a Pythagorean triple? Or
how about this: The greatest common divisor of two Fibonacci numbers is another
Fibonacci number. More precisely, the gcd of Fn and Fm is Fk , where k is the gcd of n
and m.

With such fabulous properties, it is no wonder that the Fibonacci numbers stand out
as a kind of super sequence. But what if it is not such a special sequence after all?
What if it is only a rather pedestrian sample from an entire race of super sequences?
In this case, the home world is the planet of two term recurrences. As we shall show,
its inhabitants are all just about as amazing as the Fibonacci sequence.

The purpose of this paper is to demonstrate that many of the properties of the Fi-
bonacci numbers can be stated and proved for a much more general class of sequences,
namely, second-order recurrences. We shall begin by reviewing a selection of the prop-
erties that made Fibonacci numbers famous. Then there will be a survey of second-
order recurrences, as well as general tools for studying these recurrences. A number of
the properties of the Fibonacci numbers will be seen to arise simply and naturally as
the tools are presented. Finally, we will see that Fibonacci connections to Pythagorean
triples and the gcd function also generalize in a natural way.

Famous Fibonacci properties

The Fibonacci numbers Fn are the terms of the sequence 0, 1, 1, 2, 3, 5, . . . wherein
each term is the sum of the two preceding terms, and we get things started with 0
and 1 as F0 and F1. You cannot go very far in the lore of Fibonacci numbers without
encountering the companion sequence of Lucas numbers Ln , which follows the same
recursive pattern as the Fibonacci numbers, but begins with L0 = 2 and L1 = 1. The
first several Lucas numbers are therefore 2, 1, 3, 4, 7.

Regarding the origins of the subject, Koshy has this to say:

The sequence was given its name in May of 1876 by the outstanding French
mathematician François Edouard Anatole Lucas, who had originally called it
“the series of Lamé,” after the French mathematician Gabriel Lamé [16, p. 5].
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Although Lucas contributed a great deal to the study of the Fibonacci numbers, he
was by no means alone, as a perusal of Dickson [4, Chapter XVII] reveals. In fact,
just about all the results presented here were first published in the nineteenth cen-
tury. In particular, in his foundational paper [17], Lucas, himself, investigated the
generalizations that interest us. These are sequences An defined by a recursive rule
An+2 = a An+1 + bAn where a and b are fixed constants. We refer to such a sequence
as a two-term recurrence.

The popular lore of the Fibonacci numbers seems not to include these general-
izations, however. As a case in point, Koshy [16] has devoted nearly 700 pages to
the properties of Fibonacci and Lucas numbers, with scarcely a mention of general
two-term recurrences. Similar, but less encyclopedic sources are Hoggatt [9], Hons-
berger [11, Chapter 8], and Vajda [21]. There has been a bit more attention paid to
so-called generalized Fibonacci numbers, An, which satisfy the same recursive for-
mula An+2 = An+1 + An , but starting with arbitrary initial values A0 and A1, particu-
larly by Horadam (see for example Horadam [12], Walton and Horadam [22], as well
as Koshy [16, Chapter 7]). Horadam also investigated the same sort of sequences we
consider, but he focused on different aspects from those presented here [14, 15]. In
[14] he includes our Examples 3 and 7, with an attribution to Lucas’s 1891 Théorie
des Nombres. With Shannon, Horadam also studied Pythagorean triples, and their pa-
per [20] goes far beyond the connection to Fibonacci numbers considered here. Among
more recent references, Bressoud [3, chapter 12] discusses the application of general-
ized Fibonacci sequences to primality testing, while Hilton and Pedersen [8] present
some of the same results that we do. However, none of these references share our gen-
eral point of emphasis, that in many cases, properties commonly perceived as unique
to the Fibonacci numbers, are actually shared by large classes of sequences.

It would be impossible to make this point here in regard to all known Fibonacci
properties, as Koshy’s tome attests. We content ourselves with a small sample, listed
below. We have included page references from Koshy [16].

Sum of squares
∑n

1 F2
i = Fn Fn+1. (Page 77.)

Lucas-Fibonacci connection Ln+1 = Fn+2 + Fn. (Page 80.)
Binet formulas The Fibonacci and Lucas numbers are given by

Fn = αn − βn

α − β
and Ln = αn + βn,

where

α = 1 + √
5

2
and β = 1 − √

5

2
.

(Page 79.)
Asymptotic behavior Fn+1/Fn → α as n → ∞. (Page 122.)
Running sum

∑n
1 Fi = Fn+2 − 1. (Page 69.)

Matrix form We present a slightly permuted form of what generally appears in the
literature. Our version is [

0 1
1 1

]n

=
[

Fn−1 Fn

Fn Fn+1

]
.

(Page 363.)
Cassini’s formula Fn−1 Fn+1 − F2

n = (−1)n. (Page 74)
Convolution property Fn = Fm Fn−m+1 + Fm−1 Fn−m . (Page 88, formula 6.)
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Pythagorean triples If w, x, y, z are four consecutive Fibonacci numbers, then
(wz, 2xy, yz − wx) is a Pythagorean triple. That is, (wz)2 + (2xy)2 = (yz − wx)2.
(Page 91, formula 88.)

Greatest common divisor gcd(Fm, Fn) = Fgcd(m,n). (Page 198.)

This is, as mentioned, just a sample of amazing properties of the Fibonacci and
Lucas numbers. But they all generalize in a natural way to classes of two-term recur-
rences. In fact, several of the proofs arise quite simply as part of a general development
of the recurrences. We proceed to that topic next.

Generalized Fibonacci and Lucas numbers

Let a and b be any real numbers. Define a sequence An as follows. Choose initial
values A0 and A1. All succeeding terms are determined by

An+2 = a An+1 + bAn. (1)

For fixed a and b, we denote by R(a, b) the set of all such sequences. To avoid a trivial
case, we will assume that b �= 0.

In R(a, b), we define two distinguished elements. The first, F , has initial terms
0 and 1. In R(1, 1), F is thus the Fibonacci sequence. In the more general case, we
refer to F as the (a, b)-Fibonacci sequence. Where no confusion will result, we will
suppress the dependence on a and b. Thus, in every R(a, b), there is an element F
that begins with 0 and 1, and this is the Fibonacci sequence for R(a, b).

Although F is the primordial sequence in R(a, b), there is another sequence L that
is of considerable interest. It starts with L0 = 2 and L1 = a. As will soon be clear, L
plays the same role in R(a, b) as the Lucas numbers play in R(1, 1). Accordingly, we
refer to L as the (a, b)-Lucas sequence. For the most part, there will be only one a and
b under consideration, and it will be clear from context which R(a, b) is the home for
any particular mention of F or L . In the rare cases where some ambiguity might occur,
we will use F (a,b) and L (a,b) to indicate the F and L sequences in R(a, b).

In the literature, what we are calling F and L have frequently been referred to as Lu-
cas sequences (see Bressoud [3, chapter 12] and Weisstein [23, p. 1113]) and denoted
by U and V , the notation adopted by Lucas in 1878 [17]. We prefer to use F and L to
emphasize the idea that there are Fibonacci and Lucas sequences in each R(a, b), and
that these sequences share many properties with the traditional F and L . In contrast,
it has sometimes been the custom to attach the name Lucas to the L sequence for a
particular R(a, b). For example, in R(2, 1), the elements of F have been referred to
as Pell numbers and the elements of L as Pell-Lucas numbers [23, p. 1334].

Examples Of course, the most familiar example is R(1, 1), in which F and L are the
famous Fibonacci and Lucas number sequences. But there are several other choices of
a and b that lead to familiar examples.

Example 1: R(11, −10). The Fibonacci sequence in this family is F = 0, 1, 11,
111, 1111, . . . the sequence of repunits, and L = 2, 11, 101, 1001,

10001, . . . . The initial 2, which at first seems out of place, can be viewed
as the result of putting two 1s in the same position.

Example 2: R(2, −1). Here F is the sequence of whole numbers 0, 1, 2, 3, 4, . . . , and
L is the constant sequence 2, 2, 2, . . . . More generally, R(2, −1) consists
of all the arithmetic progressions.
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Example 3: R(3, −2). F = 0, 1, 3, 7, 15, 31, . . . is the Mersenne sequence, and L =
2, 3, 5, 9, 17, 33, . . . is the Fermat sequence. These are just powers of 2
plus or minus 1.

Example 4: R(1, −1). F = 0, 1, 1, 0, −1, −1, 0, 1, 1, . . . and L = 2, 1, −1, −2, −1,
1, 2, 1, −1, . . . . Both sequences repeat with period 6, as do all the ele-
ments of R(1, −1).

Example 5: R(3, −1). F = 0, 1, 3, 8, 21, . . . and L = 2, 3, 7, 18, . . . . Do you recog-
nize these? They are the even-numbered Fibonacci and Lucas numbers.

Example 6: R(4, 1). F = 0, 1, 4, 17, 72, . . . and L = 2, 4, 18, 76, . . . . Here, L gives
every third Lucas number, while F gives 1/2 of every third Fibonacci
number.

Example 7: R(2, 1). F = 0, 1, 2, 5, 12, 29, 70, . . . and L = 2, 2, 6, 14, 34, 82, . . . .

These are the Pell sequences, mentioned earlier. In particular, for any
n, (x, y) = (F2n + F2n−1, F2n) gives a solution to Pell’s Equation x2 −
2y2 = 1. This extends to the more general Pell equation, x2 − dy2 = 1,

when d = k2 + 1. Then, using the F sequence in R(2k, 1), we obtain
solutions of the form (x, y) = (k F2n + F2n−1, F2n). Actually, equations
of this type first appeared in the Archimedean cattle problem, and were
considered by the Indian mathematicians Brahmagupta and Bhaskara [2,
p. 221]. Reportedly, Pell never worked on the equations that today bear
his name. Instead, according to Weisstein [23], “while Fermat deserves
the credit for being the first [European] to extensively study the equa-
tion, the erroneous attribution to Pell was perpetrated by none other than
Euler.”

Coincidentally, the even terms F2n in R(a, 1) also appear in another
generalized Fibonacci result, related to an identity discussed elsewhere
in this issue of the MAGAZINE [6]. The original identity for normal Fi-
bonacci numbers is

arctan

(
1

F2n

)
= arctan

(
1

F2n+1

)
+ arctan

(
1

F2n+2

)
.

For F ∈ R(a, 1) the corresponding result is

arctan

(
1

F2n

)
= arctan

(
a

F2n+1

)
+ arctan

(
1

F2n+2

)
.

The wonderful world of two-term recurrences

The Fibonacci and Lucas sequences are elements of R(1, 1), and many of their prop-
erties follow immediately from the recursive rule that each term is the sum of the two
preceding terms. Similarly, it is often easy to establish corresponding properties for el-
ements of R(a, b) directly from the fundamental identity (1). For example, in R(1, 1),
the Sum of Squares identity is

F2
1 + F2

2 + · · · + F2
n = Fn Fn+1.

The generalization of this to R(a, b) is

bn F2
0 + bn−1 F2

1 + · · · + bF2
n−1 + F2

n = Fn Fn+1

a
. (2)

This can be proved quite easily using (1) and induction.
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Many of the other famous properties can likewise be established by induction. But
to provide more insight about these properties, we will develop some analytic methods,
organized loosely into three general contexts. First, we can think of R(a, b) as a sub-
set of R

∞, the real vector space of real sequences, and use the machinery of difference
operators. Second, by deriving Binet formulas for elements of R(a, b), we obtain ex-
plicit representations as linear combinations of geometric progressions. Finally, there
is a natural matrix formulation which is tremendously useful. We explore each of these
contexts in turn.

Difference operators We will typically represent elements of R
∞ with uppercase

roman letters, in the form

A = A0, A1, A2, . . . .

There are three fundamental linear operators on R
∞ to consider. The first is the left-

shift, 	. For any real sequence A = A0, A1, A2, . . . , the shifted sequence is 	A =
A1, A2, A3, . . . .

This shift operator is a kind of discrete differential operator. Recurrences like (1)
are also called difference equations. Expressed in terms of 	, (1) becomes

(	2 − a	 − b)A = 0.

This is analogous to expressing a differential equation in terms of the differential op-
erator, and there is a theory of difference equations that perfectly mirrors the theory
of differential equations. Here, we have in mind linear constant coefficient differential
and difference equations.

As one fruit of this parallel theory, we see at once that 	2 − a	 − b is a linear
operator on R

∞, and that R(a, b) is its null space. This shows that R(a, b) is a sub-
space of R

∞. We will discuss another aspect of the parallel theories of difference and
differential equation in the succeeding section on Binet formulas.

Note that any polynomial in 	 is a linear operator on R
∞, and that all of these oper-

ators commute. For example, the forward difference operator 
, defined by (
A)k =
Ak+1 − Ak , is given by 
 = 	 − 1. Similarly, consider the k-term sum, �k , defined
by (�k A)n = An + An+1 + · · · + An+k−1. To illustrate, �2(A) is the sequence A0 +
A1, A1 + A2, A2 + A3, . . . . These sum operators can also be viewed as polynomials
in 	: �k = 1 + 	 + 	2 + · · · + 	k−1.

Because these operators commute with 	, they are operators on R(a, b), as well. In
general, if � is an operator that commutes with 	, we observe that � also commutes
with 	2 − a	 − b. Thus, if A ∈ R(a, b), then (	2 − a	 − b)� A = �(	2 − a	 −
b)A = �0 = 0. This shows that � A ∈ R(a, b). In particular, R(a, b) is closed under
differences and k-term sums.

This brings us to the second fundamental operator, the cumulative sum �. It is
defined as follows: �(A) = A0, A0 + A1, A0 + A1 + A2, . . . . This is not expressible
in terms of 	, nor does it commute with 	, in general. However, there is a simple
relation connecting the two operators:


� = 	. (3)

This is a sort of discrete version of the fundamental theorem of calculus. In the opposite
order, we have

(�
A)n = An+1 − A0,
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a discrete version of the other form of the fundamental theorem. It is noteworthy that
Leibniz worked with these sum and difference operators as a young student, and later
identified this work as his inspiration for calculus (Edwards [5, p. 234]).

The final fundamental operator is the k-skip, 
k , which selects every kth element
of a sequence. That is, 
k(A) = A0, Ak, A2k, A3k, . . . . By combining these operators
with powers of 	, we can sample the terms of a sequence according to any arithmetic
progression. For example,


5	
3 A = A3, A8, A13, . . . .

Using the context of operators and the linear space R(a, b), we can derive useful
results. First, it is apparent that once A0 and A1 are chosen, all remaining terms are
completely determined by (1). This shows that R(a, b) is a two-dimensional space.
Indeed, there is a natural basis {E, F} where E has starting values 1 and 0, and F ,
with starting values 0 and 1, is the (a, b)-Fibonacci sequence. Thus

E = 1, 0, b, ab, a2b + b2, . . .

F = 0, 1, a, a2 + b, a3 + 2ab, . . . .

Clearly, A = A0 E + A1 F for all A ∈ R(a, b). Note further that 	E = bF , so that we
can easily express any A just using F :

An = bA0 Fn−1 + A1 Fn (4)

As an element of R(a, b), L can thus be expressed in terms of F . From (4), we
have

Ln = 2bFn−1 + aFn .

But the fundamental recursion (1) then leads to

Ln = bFn−1 + Fn+1. (5)

This is the analog of the Lucas-Fibonacci connection stated above.
Recall that the difference and the k-term sum operators all preserve R(a, b). Thus,


F and �k F are elements of R(a, b) and can be expressed in terms of F using (4).
The case for � is a more interesting application of operator methods. The question is
this: If A ∈ R(a, b), what can we say about � A?

As a preliminary step, notice that a sequence is constant if and only if it is an-
nihilated by the difference operator 
. Now, suppose that A ∈ R(a, b). That means
(	2 − a	 − b)A = 0, and so too

	(	2 − a	 − b)A = 0.

Now commute 	 with the other operator, and use (3) to obtain

(	2 − a	 − b)
� A = 0.

Finally, since 
 and 	 commute, pull 
 all the way to the front to obtain


(	2 − a	 − b)� A = 0.

This shows that while (	2 − a	 − b)� A may not be 0 (indicating � A /∈ R(a, b)), at
worst it is constant. Now it turns out that there are two cases. If a + b �= 1, it can be
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shown that � A differs from an element of R(a, b) by a constant. That tells us at once
that there is an identity of the form

(� A)n = c0 Fn + c1 Fn−1 + c2,

which corresponds to the running sum property for Fibonacci numbers. We will defer
the determination of the constants ci to the section on Binet formulas.

Here is the verification that � A differs from an element of R(a, b) by a constant
when a + b �= 1. We know that (	2 − a	 − b)� A is a constant c1. Suppose that we
can find another constant, c, such that (	2 − a	 − b)c = c1. Then we would have
(	2 − a	 − b)(� A − c) = 0, hence � A − c ∈ R(a, b). It is an exercise to show c
can be found exactly when a + b �= 1.

When a + b = 1 we have the second case. A little experimentation with (1) will
show you that in this case R(a, b) includes all the constant sequences. The best way
to analyze this situation is to develop some general methods for solving difference
equations. We do that next.

Binet formulas We mentioned earlier that there is a perfect analogy between linear
constant coefficient difference and differential equations. In the differential equation
case, a special role is played by the exponential functions, eλt , which are eigenvectors
for the differential operator: Deλt = λ · eλt . For difference equations, the analogous
role is played by the geometric progressions, An = λn . These are eigenvectors for the
left-shift operator: 	λn = λ · λn . Both differential and difference equations can be for-
mulated in terms of polynomials in the fundamental operator, 	 or D, respectively.
These are in fact characteristic polynomials—the roots λ are eigenvalues and corre-
spond to eigenvector solutions to the differential or difference equation. Moreover,
except in the case of repeated roots, this leads to a basis for the space of all solutions.

We can see how this all works in detail in the case of R(a, b), which is viewed as
the null space of p(	) = 	2 − a	 − b. When is the geometric progression An = λn

in this null space? We demand that An+2 − a An+1 − bAn = 0, so the condition is

λn+2 − aλn+1 − bλn = 0.

Excluding the case λ = 0, which produces only the trivial solution, this leads to
p(λ) = 0 as a necessary and sufficient condition for λn ∈ R(a, b). Note also that the
roots of p are related to the coefficients in the usual way. Thus, if the roots are λ and µ,
then

λ + µ = a (6)

λµ = −b. (7)

Now if λ and µ are distinct, then λn and µn are independent solutions to the dif-
ference equation. And since we already know that the null space is two dimensional,
that makes {λn, µn} a basis. In this case, R(a, b) is characterized as the set of linear
combinations of these two geometric progressions. In particular, for A ∈ R(a, b), we
can express A in the form

An = cλλ
n + cµµn. (8)

The constants cλ and cµ are determined by the initial conditions

A0 = cλ + cµ

A1 = cλλ + cµµ.
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We are assuming λ and µ are distinct, so this system has the solution

cλ = A1 − µA0

λ − µ

cµ = λA0 − A1

λ − µ
.

Now let us apply these to the special cases of F and L . For F , the initial values are
0 and 1, so cλ = 1/(λ − µ) and cµ = −1/(λ − µ). For L the initial terms are 2 and
a = λ + µ. This gives cλ = cµ = 1. Thus,

Fn = λn − µn

λ − µ
(9)

Ln = λn + µn. (10)

These are the Binet Formulas for R(a, b).
When λ = µ, the fundamental solutions of the difference equation are An = λn and

Bn = nλn. Most of the results for R(a, b) have natural extensions to this case. For
example, in the case of repeated root λ, the Binet formulas become

Fn = nλn−1

Ln = 2λn.

Extensions of this sort are generally quite tractable, and we will not typically go into
the details. Accordingly, we will assume from now on that p has distinct roots, or
equivalently, that a2 + 4b �= 0.

Another special case of interest occurs when one root is 1. In this case, the geometric
progression 1n is constant, and R(a, b) contains all the constant sequences. As we saw
earlier, the condition for this is a + b = 1. Now the Binet representation gives a new
way of thinking about this result. It is an exercise to verify that a + b = 1 if and only
if 1 is a root of p.

If both roots equal 1, the fundamental solutions are An = 1 and Bn = n. This shows
that R(2, −1) consists of all the arithmetic progressions, confirming our earlier obser-
vation for Example 2.

Let us revisit the other examples presented earlier, and consider the Binet formulas
for each.

Example 0: R(1, 1). For the normal Fibonacci and Lucas numbers, p(t) = t2 − t − 1,
and the roots are α and β as defined earlier. The general version of the
Binet formulas reduce to the familiar form upon substitution of α and β

for λ and µ.

Example 1: R(11, −10). Here, with p(t) = t2 − 11t + 10, the roots are 10 and 1.
In this case the Binet formulas simply tell us what is already apparent:
Fn = (10n − 1)/9 and Ln = 10n + 1.

Example 3: R(3, −2). In this example, p(t) = t2 − 3t + 2, with roots 2 and 1. The
Binet formulas confirm the pattern we saw earlier: Fn = 2n − 1 and Ln =
2n + 1.

Example 4: R(1, −1). Now p(t) = t2 − t + 1. Note that p(t)(t + 1) = t3 + 1, so that
roots of p are cube roots of −1 and hence, sixth roots of 1. This explains
the periodic nature of F and L . Indeed, since λ6 = µ6 = 1 in this case,
every element of R(1, −1) has period 6 as well.
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Example 5: R(3, −1). The roots in this example are α2 and β2. The Binet formulas
involve only even powers of α and β, hence the appearance of the even
Fibonacci and Lucas numbers.

Example 6: R(4, 1). This example is similar to the previous one, except that the roots
are α3 and β3.

Example 7: R(2, 1). For this example p(t) = t2 − 2t − 1, so the roots are 1 ± √
2.

The Binet formulas give

Fn = (1 + √
2)n − (1 − √

2)n

2
√

2
and Ln = (1 + √

2)n + (1 − √
2)n.

Characterizing R(a, b) in terms of geometric progressions has immediate applica-
tions. For example, consider the ratio of successive terms of a sequence in R(a, b).
Using (8), we have

An+1

An
= cλλ

n+1 + cµµn+1

cλλn + cµµn
.

Now assume that |λ| > |µ|, and divide out λn:

An+1

An
= cλλ + cµµ(µn/λn)

cλ + cµ(µn/λn)
.

Since (µ/λ)n will go to 0 as n goes to infinity, we conclude

An+1

An
→ λ as n → ∞.

In words, the ratio of successive terms of a sequence in R(a, b) always tends toward
the dominant eigenvalue as n goes to infinity. That is the general version of the asymp-
totic behavior we observed for Fibonacci numbers.

As a second example, if An = cλλ
n + cµµn, then 
k An = cλλ

kn + cµµkn. This is a
linear combination of two geometric progressions as well, with eigenvalues λk and µk .
Consequently, 
k A ∈ R(a′, b′) for some a′ and b′. Now using the relationship be-
tween roots and coefficients again, we deduce that a′ = λk + µk , and by (10) that
gives a′ = L (a,b)

k . Similarly, we find b′ = −(λµ)k = −(−b)k . Thus,


k : R(a, b) → R(L (a,b)

k , −(−b)k). (11)

We can extend this slightly. If A ∈ R(a, b), then so is 	d A for any positive integer d.
Thus, 
k	

d A ∈ R(a′, b′). In other words, when A ∈ R(a, b), the sequence Bn =
Akn+d is in R(a′, b′). This corresponds to sampling A at the terms of an arithmetic
progression.

In the particular case of F and L , we can use the preceding results to determine the
effect of 
k explicitly. For notational simplicity, we will again denote by a′ and b′ the
values L (a,b)

k and −(−b)k , respectively. We know that 
k F (a,b) ∈ R(a′, b′), and begins
with the terms 0 and F (a,b)

k . This is necessarily a multiple of F (a′,b′), and in particular,
gives


k F (a,b) = F (a,b)

k · F (a′,b′). (12)

Similarly, 
k L (a,b) begins with 2 and L (a,b)

k . But remember that the latter of these is

exactly a′ = L (a′,b′)
1 . Thus,


k L (a,b) = L (a′,b′). (13)
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Of course, this last equation is easily deduced directly from the Binet formula for
L (a,b), as well. The observations in Examples 5 and 6 are easily verified using (12)
and (13).

For one more example, let us return to the analysis of � A for A ∈ R(a, b). Again
using the expression An = cλλ

n + cµµn we find the terms of � A as

� An = cλ

λn+1 − 1

λ − 1
+ cµ

µn+1 − 1

µ − 1
.

Evidently, this is invalid if either λ or µ equals 1. So, as before, we exclude that possi-
bility by assuming a + b �= 1.

Under this assumption, we found earlier that � A must differ from an element of
R(a, b) by a constant. Now we can easily determine the value of that constant. Re-
arranging the preceding equation produces

� An = cλλ

λ − 1
λn + cµµ

µ − 1
µn −

(
cλ

λ − 1
+ cµ

µ − 1

)
.

This clearly reveals � A as the sum of an element of R(a, b) with the constant C =
−(cλ/(λ − 1) + cµ/(µ − 1)).

In general, the use of this formula requires expressing A in terms of λ and µ. But
in the special case of F , we can express the formula in terms of a and b. Recall that
when A = F , cλ = 1/(λ − µ) and cµ = −1/(λ − µ). Substituting these in the earlier
formula for C , leads to

C = − 1

λ − µ

(
1

λ − 1
− 1

µ − 1

)

= − 1

λ − µ

µ − λ

(λ − 1)(µ − 1)
= 1

(λµ − λ − µ + 1)
.

Once again using (6) and (7), this yields

C = 1

1 − a − b
. (14)

As an example, let us consider �F for R(2, 3). In the table below, the first several
terms of F and �F are listed.

n 0 1 2 3 4 5
Fn 0 1 2 7 20 61
�Fn 0 1 3 10 30 91

In this example, we have C = 1/(1 − 2 − 3) = −1/4. Accordingly, adding 1/4
to each term of �F should produce an element of R(2, 3). Carrying out this step
produces

�F + 1

4
= 1

4
(1, 5, 13, 41, 121, 365, . . .).

As expected, this is an element of R(2, 3).
Applying a similar analysis in the general case (with the assumption a + b �= 1)

leads to the identity
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�Fn = 1

a + b − 1
(Fn+1 + bFn − 1).

This reduces to the running sum property for Fibonacci numbers when a = b = 1. A
similar analysis applies in the case a + b = 1. We leave the details to the reader.

In the derivation of the Binet formulas above, a key role was played by the eigen-
vectors and eigenvalues of the shift operator. It is therefore not surprising that there is
a natural matrix formulation of these ideas. That topic is the third general context for
tool development.

Matrix formulation Using the natural basis {E, F} for R(a, b), we can represent
	 by a matrix M . We already have seen that 	E = bF , so the first column of M has
entries 0 and b. Applying the shift to F produces (1, a, . . .) = E + aF . This identifies
the second column entries of M as 1 and a, so

M =
[

0 1
b a

]
. (15)

Now if A ∈ R(a, b), then relative to the natural basis it is represented by [A] =
[A0 A1]T . Similarly, the basis representation of 	n A is [An An+1]T . On the other
hand, we can find the same result by applying M n times to [A]. Thus, we obtain

[
0 1
b a

]n [
A0

A1

]
=

[
An

An+1

]
. (16)

Premultiplying by [1 0] then gives

[
1 0

] [
0 1
b a

]n [
A0

A1

]
= An. (17)

This gives a matrix representation for An .
Note that in general, the i th column of a matrix M can be expressed as the prod-

uct Mei , where ei is the i th standard basis element. But here, the standard basis
elements are representations [E] and [F]. In particular, Mn[E] = [En En+1]T and
Mn[F] = [Fn Fn+1]T . This gives us the columns of Mn , and therefore

Mn =
[

En Fn

En+1 Fn+1

]
.

Then, using 	E = bF , we have
[

0 1
b a

]n

=
[

bFn−1 Fn

bFn Fn+1

]
. (18)

This is the general version of the matrix form for Fibonacci numbers.
The matrix form leads immediately to two other properties. First, taking the deter-

minant of both sides of (18), we obtain

bFn−1 Fn+1 − bF2
n = (−b)n.

Simplifying,

Fn−1 Fn+1 − F2
n = (−1)nbn−1,

the general version of Cassini’s formula.
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Second, start with Mn = Mm Mn−m , expressed explicitly in the form[
bFn−1 Fn

bFn Fn+1

]
=

[
bFm−1 Fm

bFm Fm+1

] [
bFn−m−1 Fn−m

bFn−m Fn−m+1

]
.

By inspection, we read off the 1, 2 entry of both sides, obtaining

Fn = Fm Fn−m+1 + bFm−1 Fn−m, (19)

generalizing the Convolution Property for regular Fibonacci numbers. As a special
case, replace n with 2n + 1 and m with n + 1, producing

F2n+1 = F2
n+1 + bF2

n . (20)

This equation will be applied in the discussion of Pythagorean triples.
This concludes our development of general tools. Along the way, we have found

natural extensions of all but two of our famous Fibonacci properties. These extensions
are all simple and direct consequences of the basic ideas in three general contexts:
difference operators, Binet formulas, and matrix methods. Establishing analogs for the
remaining two properties is just a bit more involved, and we focus on them in the next
section.

The last two properties

Pythagorean triples In a way, the connection with Pythagorean triples is triv-
ial. The well-known parameterization (x2 − y2, 2xy, x2 + y2) expresses primitive
Pythagorean triples in terms of quadratic polynomials in two variables. The construc-
tion using Fibonacci numbers is similar. To make this clearer, note that if w, x, y, z
are four consecutive Fibonacci numbers, then we may replace w with y − x and z
with y + x . With these substitutions, the Fibonacci parameterization given earlier for
Pythagorean triples becomes

(wz, 2xy, yz − wx) = (
(y − x)(y + x), 2yx, y(y + x) − x(y − x)

)
.

Since we can reduce the parameterization to a quadratic combination of two parame-
ters in this way, the ability to express Pythagorean triples loses something of its mys-
tery. In fact, if w, x, y, z are four consecutive terms of any sequence in R(a, b), we
may regard x and y as essentially arbitrary, and so use them to define a Pythagorean
triple (x2 − y2, 2xy, x2 + y2). Thus, we can construct a Pythagorean triple using just
two consecutive terms of a Fibonacci-like sequence.

Is that cheating? It depends on what combinations of the sequence elements
are considered legitimate. The Fibonacci numbers have been used to parameter-
ize Pythagorean triples in a variety of forms. The version given above, (wz, 2xy,

yz − wx), appears in Koshy [16] with a 1968 attribution to Umansky and Tallman.
Here and below we use consecutive letters of the alphabet rather than the original
subscript formulation, as a notational convenience. Much earlier, Raine [19] gave it
this way: (wz, 2xy, t), where, if w is Fn then t is F2n+3. Boulger [1] extended Raine’s
results and observed that the triple can also be expressed (wz, 2xy, x2 + y2). Ho-
radam [13] reported it in the form (xw, 2yz, 2yz + x2). These combinations use a
variety of different quadratic monomials, including both yz and x2. So, if those are
permitted, why not simply use the classical (x2 − y2, 2xy, x2 + y2) and be done with
it? The more complicated parameterizations we have cited then seem to be merely
exercises in complexification.
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In light of these remarks, it should be no surprise that the Fibonacci param-
eterization of Pythagorean triples can be generalized to R(a, b). For example,
Shannon and Horadam [20] give the following version: ((a/b2)xw, 2Pz(Pz − x),

x2 + 2Pz(Pz − x)) where P = (a2 − −b)/2b2.
Using a modified version of the diophantine equation, we can get closer to the

simplicity of Raine’s formulation. For R(a, b) we replace the Pythagorean identity
with

X 2 + bY 2 = Z2 (21)

and observe that the parameterization

(X, Y, Z) = (v2 − bu2, 2uv, v2 + bu2)

always produces solutions to (21). Now, if w, x , y, and z are four consecutive terms of
A ∈ R(a, b), then we can express the first and last as

w = 1

b
(y − ax)

z = bx + ay.

Define constants c = b/a and d = c − a. Then a calculation verifies that

(X, Y, Z) = (cwz − dxy, 2xy, xz + bwy) (22)

is a solution to (21). In fact, with u = x and v = y, it is exactly the parameterization
given above.

In the special case that x = F (a,b)
n , we can also express (22) in the form

(X, Y, Z) = (cwz − dxy, 2xy, t)

where t = F2n+1. This version, which generalizes the Raine result, follows from (20).
Note, also, that when a = b = 1, (22) becomes (wz, 2xy, xz + wy), which is another
variant on the Fibonacci parameterization of Pythagorean triples.

Greatest common divisor The Fibonacci properties considered so far make sense
for real sequences in R(a, b). Now, however, we will consider divisibility properties
that apply to integer sequences. Accordingly, we henceforth assume that a and b are
integers, and restrict our attention to sequences A ∈ R(a, b) for which the initial terms
A0 and A1 are integers, as well. Evidently, this implies A is an integer sequence. In
order to generalize the gcd property, we must make one additional assumption: that
a and b are relatively prime. Then we can prove in R(a, b), that the gcd of Fm and
Fn is Fk , where k is the gcd of m and n. The proof has two parts: We show that Fk

is a divisor of both Fm and Fn, and that Fm/Fk and Fn/Fk are relatively prime. The
first of these follows immediately from an observation about the skip operator already
presented. The second part depends on several additional observations.

OBSERVATION 1. Fk is a divisor of Fnk for all n > 0.

Proof. We have already noted that 
k F = Fk · F (a′,b′) so every element of 
k F =
F0, Fk, F2k, . . . , is divisible by Fk .

OBSERVATION 2. Fn and b are relatively prime for all n ≥ 0.

Proof. Suppose p is prime divisor of b. Since a and b are relatively prime, p is not
a divisor of a. Modulo p, the fundamental recursion (1) becomes Fn+2 ≡ aFn+1, so
Fn ≡ F1an−1 for n ≥ 1. This shows that Fn �≡ 0, since p is not a divisor of a.
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OBSERVATION 3. If A ∈ R(a, b), and if p is a common prime divisor of Ak and
Ak+1, but is not a divisor of b, then p is a divisor of An for all n ≥ 0.

Proof. If k > 0, Ak+1 = a Ak + bAk−1, so p is a divisor of Ak−1. By induction, p
divides both A0 and A1, and therefore An for all n ≥ 0.

OBSERVATION 4. If positive integers h and k are relatively prime, then so are Fh

and Fk.

Proof. If p is a prime divisor of Fh and Fk , then by Observation 2, p is not a
divisor of b. Since h and k are relatively prime, there exist integers r and s such that
rh + sk = 1. Clearly r and s must differ in sign. Without loss of generality, we assume
that r < 0, and define t = −r . Thus, sk − th = 1. Now by Observation 1, Fsk is
divisible by Fk , and hence by p. Similarly, Fth is divisible by Fh , and hence, also by
p. But Fth and Fsk are consecutive terms of F , so by Observation 3, p is a divisor of
all Fn . That is a contradiction, and shows that Fh and Fk can have no common prime
divisor.

OBSERVATION 5. If a′ = L (a,b)
k and b′ = −(−b)k , then a′ and b′ are relatively

prime.

Proof. Suppose, to the contrary, that p is a common prime divisor of a′ and b′. Then
clearly p is a divisor of b, and also a divisor of L (a,b)

k , which equals bF (a,b)

k−1 + F (a,b)

k+1

by (5). This makes p a divisor of F (a,b)

k+1 , which contradicts Observation 2.

With these observations, we now can prove the

THEOREM. The gcd of Fm and Fn is Fk, where k is the gcd of m and n.

Proof. Let s = m/k and t = n/k, and observe that s and t are relatively prime. We
consider A = 
k F = F0, Fk, F2k, . . . . As discussed earlier, A can also be expressed as
Fk · F (a′,b′) where a′ = Lk and b′ = −(−b)k . Moreover, by Observation 5, a′ and b′ are
relatively prime. As in Observation 1, we see at once that every A j is a multiple of Fk ,
so in particular, Fk is a divisor of As = Fks = Fm and At = Fkt = Fn . On the other
hand, Fm/Fk = F (a′,b′)

s and Fn/Fk = F (a′,b′)
t , are relatively prime by Observation 4.

Thus, Fk is the gcd of Fm and Fn.

Several remarks about this result are in order. First, in Michael [18], the correspond-
ing result is established for the traditional Fibonacci numbers. That proof depends on
the R(1, 1) instances of (19), Observation 1, and Observation 3, and extends to a proof
for R(a, b) in a natural way.

Second, Holzsager [10] has described an easy construction of other sequences An

for which gcd(An, Am) = Agcd(m,n). First, for the primes pk , define Apk = qk where
the qk are relatively prime. Then, extend A to the rest of the integers multiplicatively.
That is, if n = ∏

pei
i then An = ∏

qei
i . Such a sequence defines a mapping on the pos-

itive integers that carries the prime factorization of any subscript into a correspond-
ing factorization involving the qs. This mapping apparently will commute with the
gcd. By Observation 4, the terms F (a,b)

pk
are relatively prime, but since F2 = a and

F4 = a3 + 2ab, the F mapping is not generally multiplicative. Thus, Holzsager’s con-
struction does not lead to examples of the form F (a,b).

Finally, we note that there is similar result for the (a, b)-Lucas numbers, which we
omit in the interest of brevity. Both that result and the preceding Theorem also appear
in Hilton and Pedersen [8]. Also, the general gcd result for F was known to Lucas,
and we may conjecture that he knew the result for L as well.
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In particular and in general

We have tried to show in this paper that much of the mystique of the Fibonacci numbers
is misplaced. Rather than viewing F as a unique sequence with an amazing host of
algebraic, combinatorial, and number theoretic properties, we ought to recognize that
it is simply one example of a large class of sequences with such properties. In so
arguing, we have implicitly highlighted the tension within mathematics between the
particular and the general. Both have their attractions and pitfalls. On the one hand,
by focusing too narrowly on a specific amazing example, we may lose sight of more
general principles at work. But there is a countervailing risk that generalization may
add nothing new to our understanding, and result in meaningless abstraction.

In the case at hand, the role of the skip operator should be emphasized. The proof of
the gcd result, in particular, was simplified by the observation that the skip maps one
R(a, b) to another. This observation offers a new, simple insight about the terms of
Fibonacci sequences—an insight impossible to formulate without adopting the general
framework of two-term recurrences.

It is not our goal here to malign the Fibonacci numbers. They constitute a fasci-
nating example, rich with opportunities for discovery and exploration. But how much
more fascinating it is that an entire world of such sequences exists. This world of the
super sequences should not be overlooked.
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