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New Elementary Functions? The elementary functions that are studied in calculus class
are defined by long tradition: rational functions, trigonometric functions and their inverses,
exponentials and logs. But we should not think that these are the only functions which deserve a
place in the mathematics curriculum. For example, [2] makes a persuasive case for the Lambert
W function, defined as the inverse of ze”. There are also functions which were important in the
history of mathematics, but which modern texts ignore. Who remembers the Gudermannian
function?

Increasingly, computer algebra systems are playing a role in mathematics courses. These systems
have an enormous capacity for storing information, and support a far richer library of named
functions than what is found in textbooks. The W function just mentioned appears in both
Maple and Mathematica (called ProductLog in the latter). And these computer systems do not
keep their non-standard functions tucked away in some obscure corner known only to specialists.
Simply enter an innocent looking integral or differential equation, and unfamiliar results can pop
up without warning. In these cases, the answer provided by the computer may provoke a puzzled
response. What on earth is ProductLog? Exploring the properties of these unfamiliar functions
is a wonderful opportunity for both students and teachers.

This note reports such an exploration for a function called glog (pronounced gee-log). As reported
in [3], glog was invented to solve a class of algebraic equations. It is defined as the inverse of
e” /x, making it a close cousin of W. Indeed,

W (x) = —glog(~1/z) and glog(z) = —W(~1/x) (1)

so that glog and W can be used interchangably in a number of applications. Here, the emphasis
will be on questions connected with symbolic integration, a context in which glog and W have
different properties.

The basic question is this: when working with glog or W, which functions have closed form
integrals? Using just the familiar elementary functions of calculus, the question of closed form
integrability has been well studied; [4, 5] provide nice introductions to this subject. But what
happens when a new function is introduced? On the simplest level, W itself has a closed form
integral, but I have been unable to discover whether glog does. On the other hand, there are a
number of simple forms involving glog with nice symbolic integrals. It is also natural to wonder



whether the addition of these new functions enlarges the set of elementary functions which have
closed form integrals. Unfortunately, I do not have an answer to this question, although I will
offer some partial results connected with the integrability of glog.

Definitions and Notation. As mentioned, the glog function is defined as the inverse of e*/x;
W is the inverse of ze”. It is a bit of an abuse of notation to refer to these as functions since each
is double valued over a part of its domain, but that will present no difficulties in what follows.
The elementary functions are as described above: rational functions, trigonometric functions and
their inverses, €”, log x, and all combinations of these under the operations of arithmetic, as well
as function composition. Similarly, the g-elementary functions are all the combinations of the
elementary functions together with glog. This is a strictly larger set of functions because glog is
known not to be elementary [4]. In light of (1), there is no point in also defining W-elementary
functions, for these are just the same as the g-elementary functions.

If a function has an elementary function anti-derivative, it is said to be elementary function
integrable, abbreviated FFI If the antiderivative is g-elementary than the function is g-elementary
function integrable, denoted gEFI. Since the elementary functions are a subset of the g-elementary
functions, it is clear that every EFI function is also gEFI. Observe also that each EFI function is
elementary, being the derivative of an elementary function. This observation depends on the fact
that the elementary functions are closed under differentiation. A parallel argument shows that
every gEFT function is g-elementary, reflecting the fact that the derivative of glog is g-elementary.
More specifically,
glog(z)
x glog(x) — z

as is easily derived using implicit differentiation.

glog'(z) =

Now the questions posed above can be stated succinctly:

1. Which g-elementary functions are gEFI?

2. Are there any elementary functions that are gEFI but not EFI?

The additional question of whether any g-elementary functions are EFI is quickly disposed of:
if a function is EFI then it is elementary, so the only g-elementary EFI functions are those that
are actually elementary. In particular, glog itself is not EFI.

Is glog gEFI? I do not know. I have succeeded neither in integrating glog, nor in proving that
it has no closed form integral. As a partial result, there is the following

Proposition: For any elementary function f, f(glog(x)) is not an antiderivative of glog(x).



Proof: Suppose to the contrary that f is an elementary function and that
—f ( 1 ( )) =gl ( )
og(x og(x).
l glog glog
This leads to

f'(glog(x))glog'(z) = glog(x)

, glog(z)
flglog(x)) — =7 - clog(1) — 2

f'(glog(x)) = x glog(x) — .

glog ()

Now replace x in this identity with e¥/y, to obtain
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fly)=e ;

and hence o
o [’ — f(y)]

This would imply that e¥/y is EFI, which is false [5]. This contradiction shows that no such
function f can exist, and completes the proof.

A slight generalization of this result can be proved by similar methods: if f(x,y) is an elementary
function, then f(x,glog(z)) cannot be an antiderivative of glog. The original version of the
proposition says nothing about expressions such as = glog(x) and glog(x)/x; the generalized
version shows that such expressions cannot be antiderivatives for glog. Although these results
do not show that glog cannot be gEFI, they make that conclusion seem quite plausible.

Some gEFI Functions. A simple example of a gEFI function is glog(x)/x because

/glog(ﬂr) dp — glog2 ®) _ glog(a).

X

Notice that the anti-derivative of glog(x)/x is not an elementary function, for otherwise we could
solve for glog and deduce that glog is elementary, a contradiction. So glog(z)/z is gEFI but not
EFL

Generalizing the preceding example, for n > 1

/glog”(x) g glog™(z)  glog"(x)
T n+1 n

This result, in turn, is handy for integration by parts. Thus

glog" (z)
1 n pum
/gog () dz /x , dx

_(goe" (@) glog"(z))  reglog™(z) glog"(x)
- n+1 n n—+1 n '




This equation can be rearranged to obtain the following recursion

n2

—1
/glog”(a:) dx.

[ glog™ @) do = = (nglog™ () — (n + L)glog” (x)) = "—

For n =1, the integral on the right side drops out, to produce

/ glog?(z) dx = x(glog®(z) — 2glog(x)).

It is now easy to compute integrals for successive powers of glog, and the following pattern
emerges: for n > 2

/ glog"(z) dz == [glog”(:r) + Z(—l)k% glog" *(x)| .

Although this formula has a certain kind of charm, and is straightforward to verify, a specific
example does a much better job of conveying the pattern involved. With n = 5, we find

/glogsx dx = z[glog’r — 5glogz + 5 - 3glog’r — 5 - 3 - 2glog’z +5-3 -2 - 1glog z.]

All of these examples involve gEFI functions, and so they shed no light on the existence of
elementary gEFI non-EFI functions.

gEFI non-EFI Functions. The interest in gEFI non-EFT functions is prompted by a simple
question: does the introduction of glog enlarge the set of elementary functions which are inte-
grable in closed form? An affirmative answer can be established by one example of an elementary
function can be integrated using glog, but not otherwise.

I do not have an example of such a function, but here is a related, if somewhat foolish, example:

/% dx = glog(z) — log(glog(x)).

The example is foolish because we already know how to integrate 1/z, and the example is simply
a restatement of the identity

log(z) = glog(x) — log(glog(z)).

However, the example does show that elementary functions can have integrals expressed in terms
of glog.

A better example would be to integrate something like e”/z using glog. Clearly e”/z is an
elementary function, yet, as mentioned earlier, it is not EFI. On the other hand, as suggested by
Figure 1,
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Figure 1: Integrals of glog(z) and e¥/y

Accordingly, showing that glog is gEFI would also show that e*/x is gEFT.

What if glog is not integrable? A variation on the argument above might still lead to a gEFI,
non-EFI function. The relation between the integrals of e” /x and glog(z) occurs in a similar way
for any pair of inverse functions. The idea would be to find a pair of inverses of which one is
elementary but not EFI, and the other one is gEFI. Candidate pairs are easily formulated. Some
examples are

S & o=y glog(y)
1 1 1
Y= og(2) & = —glog <—>
z ) Y

()

y=— & x=glog| -

Y

None of these pairs leads to a gEFI non-EFI function. In each case, either the elementary
function is EFI, or I have been unable to show that the inverse is gEFI. Rather than beginning
with inverse function pairs, an alternative is to start with a nice gEFI function and hope that its
inverse is elementary, and not EFI. For example, let h(z) = 22/(z — 1). Then, as shown earlier,
h(glog(z)) is gEFI, with integral zglog(x). Now the inverse function is " @) /h=1(z), and is
elementary since h~! is. This illustrates the idea of beginning with a ¢EFI and checking that
the inverse is elementary. Unfortunately, for this particular example, the inverse function is also
EFT: its integral becomes, with the change of variables x = h(u),

u

e u—2 e
Sy du= [ e du =
/u () du (u—l)26 T

At this point, the strategy of finding a pair of inverse functions, one of which is elementary and
not EFI, the other of which is gEFI, remains no better than a promising lead. Whether it can
be used to find an elementary gEFI function that is not EFI remains to be seen.
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Differential Equations. There is an obvious direction for generalizing these questions about
integration using glog. Integration amounts to solving a very special kind of differential equation.
How might glog be used to solve other kinds of differential equations? For example, how would
you solve this one?
y_y+1

oz

yy

Of course you could separate the variables and integrate both sides. But you could also make

the substitution ©v = y 4+ 1 to obtain
u
!/

BRI

and recognize that u = glog(z) is a solution. In fact, the general solution is u = glog(cz).
Another example is

(zy — )y =y
The solution is y = zglog(cx), as the reader is invited to verify. It is also possible to solve this
equation by separating variables after making the substitution y = xv. Are there differential

equations that can be solved using glog that cannot be solved by some other means? That
remains an open question.

The W Function. So far, almost nothing has been said about W. In contrast to glog, the W
function does have a simple integral: (W (z) —1+1/W(x)) ([2]). However, that does not mean
that W necessarily enlarges the class of integrable elementary functions. The analogy with glog
breaks down because the inverse of W, xe® is itself integrable. On the other hand, W does permit
the integration of a number of differential equations, accounting for several of the applications

of W cited in [2].

Conclusion. Introducing glog (or equivalently, W) leads in a natural way to questions about
integration in closed form. The examples above demonstrate that glog gives rise to a number
of functions with simple integrals. However, a fundamental question, whether glog itself has a
simple integral, remains unresolved. On one hand, if glog s integrable in closed form, it provides
an immediate example of a gEFI non-EFI function, and shows that glog extends the set of
integrable elementary functions. On the other hand, the partial results proven above make it
seem unlikely that glog is integrable in closed form, and suggest that some other example of a
gEFI non-EFT function should be sought. For now, these will have to remain open questions.
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