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How long a ladder can you carry horizontally around a corner? Or, in the idealized
geometry of FIGURE 1, how long a line segment can be maneuvered around the corner
in the L-shaped region shown? This familiar problem, which dates to at least 1917, can
be found in the max/min sections of many calculus texts and is the subject of numerous
web sites. The standard solution begins with a twist, transforming the problem from
maximization to minimization. This bit of misdirection no doubt contributes to the
appeal of the problem. But it fairly compels the question, Is there a direct approach?

(a,b)

X

Figure 1 Geometry of ladder problem

In fact there is a beautifully simple direct approach that immediately gives new in-
sights about the problem. It also gives us an excuse to revisit a lovely topic—envelopes
of families of curves. This topic was once a standard part of the calculus curriculum,
but seems to be largely forgotten in the current generation of texts. A generalized lad-
der problem considered in [17] can also be analyzed using the direct approach.

Ladder problem history

It is not easy to discover when the ladder problem first appeared in calculus texts.
Singmaster [24] has compiled an extensive chronology of problems in recreational
mathematics. There, the earliest appearance of the ladder problem is a 1917 book by
Licks [15]. As Singmaster notes, this version of the problem concerns a stick to be
put up a vertical shaft in a ceiling, rather than a ladder and two hallways, but the
two situations are mathematically equivalent. Licks gives what is today the standard
solution, finding the maximum length stick that gets stuck in terms of the angle the
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stick makes with the floor. He concludes This is a simple way to solve a problem which
has proved a stumbling block to many. Whether this implies an earlier provenance in
recreational problem solving, or a more mundane history of people actually putting
long sticks up vertical shafts, who can say?

American University is fortunate to possess an extensive collection of mathematical
textbooks dating to the 18th century. Haphazardly selecting a sample of eight calculus
textbooks published between 1816 and 1902, I searched without success for mention
of the ladder problem, or the equivalent, in discussions of maxima and minima. Many
of these texts did have quite a number of max/min exercises, including several that
our students would recognize. Of particular note is the text by Echols [7], published
in 1902. Among the 56 max/min exercises in this work, nearly all of today’s standard
exercises appear, but not the ladder problem. More than half of the books also have a
section on envelopes. Coincidentally, in the 1862 work of Haddon [13], the envelope
we will discuss below appears in an example about a ladder sliding down a wall, but
not in connection with any max/min problem.

In modern times, a variation on the ladder problem has been the subject of ongoing
research. This is the sofa problem, which seeks the region of greatest area that can
go around a corner between halls of given widths. The sofa problem appears in a
volume on unsolved problems in geometry [6], and gave birth to the Moving a Sofa
Constant [9]. For more on this open problem, see [27].

The main focus here is the use of envelopes to solve the ladder problem. The earliest
record I have found for this approach is an anecdote of Cooper [3], who reports meeting
a variant of the ladder problem in 1959 on a physics quiz at Princeton and solving it
via envelopes. There is also one reference from Singmaster’s compilation in which
envelopes are used. Fletcher [10] provides five solutions of the ladder problem, with
no explicit use of calculus. One of these methods uses envelopes. However, in order to
avoid calculus, Fletcher depends on geometric properties of envelopes that are obscure
by present day standards. Moreover, the exposition is rather terse, and says almost
nothing about what the envelope is, how it arises, or why it provides a solution to the
ladder problem.

The direct approach

As mentioned earlier, the standard solution to the ladder problem begins with a re-
statement: the goal is shifted from finding the longest ladder that will go around the
corner to finding the shortest ladder that will get stuck. In seeking a direct approach,
we consider actually moving a segment around a corner, trying to use as little of the
space as possible. Begin with the segment along one of the outer walls, say with the
left end at the origin and the right end at the point (L, 0). Slide the left end up the y
axis, all the while keeping the right end on the x axis. Intuitively, this maneuver keeps
the line segment as far as possible from the corner point (a, b). Surely, if a segment of
length L cannot get around the corner using this conservative approach, then it won’t
go around no matter what we do.

Now as you slide the segment along the walls it sweeps out a region €2, as illustrated
in FIGURE 2. The outer boundary of €2 is part of curve called an astroid, with equation

23 4 y2/3 — 123 (1)

The full astroid is in the shape of a four pointed star (hence the name), but for the
ladder problem, we are concerned only with the part of the curve that lies in the first
quadrant. Our line segment will successfully turn the corner just when €2 stays within
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the hallways. And that is true as long as the corner point (a, b) is outside €2. The
extreme case occurs when (a, b) lies on the boundary curve, whereupon

a2 4 p3 — 123,

This shows that the longest segment that can go around the corner has length L =
(@3 + p¥3)32,

y
L_
(a,b)
Q —
- -

Figure 2 Swept out region

Of course, this solution depends on knowing the boundary curve for 2. Once you
know that, the problem becomes transparent. We can easily visualize the region for a
short segment that will go around the corner, and just as easily see what happens if we
increase the length of the segment. In contrast with the usual approach to this problem,
we are led to a direct understanding of the maximization process. And in the context
of the equation for the astroid, we understand why the formula for the extreme value
of L takes the form that it does.

In fact, in this direct approach, the optimization part of the problem becomes trivial.
It is akin to asking “What is the longest segment that can be contained within the unit
interval?” This is nominally a max/min problem, but no analysis is needed to solve
it. In the same way, the direct approach to the ladder problem renders the solution
immediately transparent, once you have found the boundary curve for 2. But it is
not quite fair to claim that this approach eliminates the need for calculus. Rather, the
point of application of the calculus is shifted from the optimization question to that of
finding the boundary curve.

Envelopes of families of curves

So how is the boundary curve found? The key is to observe that it is the envelope of a
family of curves. For the current case, notice that each successive position of the line
segment can be identified with a linear equation. Let the angle between the segment
and the positive x axis be «, as shown in FIGURE 3. Then the x and y intercepts of the
line segment are L cos « and L sin «, respectively, so the line is defined by the equation
a + .y

cosa  sino

=L )

This equation defines a family of lines in terms of the parameter «.
The region 2 is the union of all the lines in the family. To be more precise, we
restrict « to the interval [0, /2], and intersect all the lines with the first quadrant.
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Visually, it seems apparent that the boundary curve is tangent at each point to one of
the lines. This observation, which will be proved presently, shows that the boundary
curve is an envelope for the family of lines.

Lsina L

ol

L cosa

Figure 3 Parameter o

In general, an equation of the form
F(x,y,0) =0 3

defines a family of plane curves with parameter « if for each value of « the equation
defines a plane curve C, in x and y. An envelope for such a family is a curve every
point of which is a point of tangency with one of the curves in the family.

There is a standard method for determining the envelope curve: Differentiate (3)
with respect to «, and then use the original equation to eliminate the parameter. Tech-
nically, (x, y) is a point of the envelope curve only if it satisfies both (3) and

iF(x,y,(%):() “)
oo
for some «. Combining equations (3) and (4) to eliminate « produces an equation in x
and y. This will be referred to as the envelope algorithm.

Obviously, the envelope algorithm depends on certain assumptions about F, requir-
ing at the very least differentiability with respect to «. Also, in the general case, the
condition is necessary but not sufficient, so there may exist curves which satisfy (3)
and (4), but which are not part of the envelope. For the moment, let us gloss over these
issues, and move straight on to applying the algorithm for the ladder problem. A more
careful discussion of the technicalities will follow.

The first step is to differentiate (2) with respect to «. That gives

xsine  ycos«a

=0
cosa  sin’«
and after rearrangement we obtain
P 3
xsin” o = ycos” a. (®)]

By combining this equation with (2), we wish to eliminate the parameter «. With that
in mind, rewrite (5) in the form

yi3

tana = —.
X173
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This leads to

x1/3 1/3

. y
cos¢y = ————— and Ssina =

/x23 F y2/3 /x2/3 y2/3'

Now we can substitute these expressions in (2), and so derive the following equation
in x and y alone.

x2/3 4 y2/3 + y2/3 x2/3 y2/3 =L

Simplifying, we have

(x2/3 4 y2/3) /x2/3 4 y2/3 — (X2/3 + y2/3)3/2 - L

and so we arrive at (1).
We can also derive a parameterization of the envelope. In the equations above for

cos o and sin «, replace /x2/3 + y2/3 with L'/3. Solving for x and y produces

x(a) = Lcos’ «
(6)

y(a) = Lsin’ a.

In this parameterization, (x (o), y(c)) is the point of the envelope that lies on the line
corresponding to parameter value o.

Pedagogy

The foregoing computation is an intriguing way to deduce the boundary curve for
the region 2. From that curve we can immediately find the solution to the ladder
problem as discussed earlier. As elegant as this solution is, it may be inaccessible
to today’s calculus students. Interestingly, there is some evidence to suggest that the
computation of envelopes via the method above was once a standard topic in calculus.
This is certainly the impression left by [5, 8, 12], all of which date to the 1940’s and
1950’s. On the other hand, anecdotal reports by colleagues who were students and
teachers of calculus during that time are inconsistent on this point.

In today’s calculus texts (or more precisely, in their indices), one finds no mention
of envelopes. The topic is covered in older treatments of calculus [4, 14] and advanced
calculus [25] and the expositions in these sources tend to be very similar. My infor-
mal survey (as described above) suggests that the topic of envelopes was common in
calculus texts throughout the 19th century. Was the topic common enough in the cal-
culus curriculum in the first half of the twentieth century to be considered standard?
If so, when and why did this topic fall out of favor? These are interesting historical
questions.

If the topic of envelopes has been forgotten in calculus texts, it has not disappeared
from the mathematical literature. Indeed, in expository publications like this MAGA-
ZINE, one readily finds recent mention of envelopes and the envelope algorithm. See,
for example, [1, 11, 16, 20, 22, 23]. There is also an application of envelopes in the
field of economics, referred to as the Envelope Theorem [18, 26]. Nevertheless, I have
a feeling that this topic is not as widely known among college mathematics faculty as
it should be. Accordingly, a rather detailed discussion of envelopes is presented in the
next section.

Outside of calculus courses, where might envelopes by found? The topic appears in
works on properties of plane curves (see [19, 28]), another subject that seems to have
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been much more common in an earlier era. To a previous generation of mathemati-
cians who were well acquainted with such terms as involute, evolute, and caustic, the
boundary curve (1) would be familiar indeed. It is known not only as an astroid, but
more generally as an instance of hypocycloid, the locus of a point on a circle rolling
within a larger circle. We obtained it as the envelope of the family of lines (2), identi-
fied in [28] as the Trammel of Archimedes. The same curve can also be obtained as the
envelope of a family of ellipses, the sum of whose axes is equal to L [28, p. 2]. See
FIGURE 4.

Figure 4 The astroid as envelope of a family of ellipses

The treatment of envelopes in [28] implies that this topic is properly a part of the
study of differential equations. Perhaps it is in this context that envelopes once were
considered a standard calculus topic, although that is certainly not the case in [4, 14,
25].

However the historical questions are answered, it is something of a shame that en-
velopes are not included in modern curricula, even for enrichment. The topic has ob-
vious visual appeal, and the method is an attractive application of differentiation. In
addition, the consideration of why and how the method works leads to interesting in-
sights. And of course, if our students knew about envelopes, the solution of the ladder
problem would be much simplified. Still, taking everything into consideration, this
topic is probably too great a digression for most calculus classes. No doubt, embark-
ing on such a digression just to reach an elegant solution to the ladder problem would
be (dare I say it) pushing the envelope.

As a compromise, it might be reasonable to guide students through a construction
of the boundary curve of €2, without using the general method of envelopes. Here
is one approach. Consider sweeping out the region 2 using a segment of length L.
For each value of «, there will be one position of the line segment, given by (2).
Now for a fixed value of x¢, consider the points (xg, yo(e))) that lie on the various
line segments. Evidently, the maximum value yy(«) defines the point of the boundary
curve corresponding to x¢o. From (2), we have

yo(ar) = Lsina — xptan«
and the maximum value for 0 < o« < 7/2 is easily found to be
Yo = (L2/3 _ x§/3)3/2.

In this way, the boundary curve is obtained. But to solve the ladder problem, we do not
really need the entire boundary curve. All we need to know is where the point (a, b)
lies relative to the boundary curve. So, in the preceding argument, simply take xy = a.
This provides another approach to the ladder problem.
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Technicalities

In deriving the envelope algorithm, one generally assumes that locally the envelope is
a curve smoothly parameterized by «. By definition, each point P of the envelope is
a point of tangency to some member of the family of curves, and each member of the
family is tangent to the envelope at some point P. This suggests that P can be defined
as a function of «. However, some caution is necessary. If a curve in the family touches
the envelope in multiple points, there will be ambiguity in defining P («). This is the
situation when we generate the astroid as the envelope of a family of ellipses, as in
FIGURE 4. In this case there are many functions P («) that map the parameter domain
to the envelope, not all of which are continuous. Of course in this example it is possible
to choose P («) consistently to obtain a smooth parameterization of the envelope. But
it is not clear how this can be done in general. Accordingly, we assume the envelope
has a smooth parameterization P(«) = (x(«), y(cw)) such that P(«) is the point of
tangency between the envelope and the curve C,.

With that assumption, observe that the equation F (x(«), y(«), o) = 0 holds iden-
tically, so the derivative with respect to « is zero. Viewing F as a function of three
variables, the chain rule gives

OFdx 0Fdy OF _ -
ax da = dyda  da

But we can also view F as a function of two variables, thinking of « as a fixed pa-
rameter. In this view, the xy gradient of F is normal to the curve F(x, y,a) = 0 at
each point. Meanwhile, the parameterization of the envelope provides a tangent vec-
tor (&, 9y at each point of that curve. At the point (x(«), y(«)), the two curves are

da’ da
tangent, so the normal vector V., F = (%—f, %—‘;) is orthogonal to the velocity vector

g—;, %). This shows that the first two terms on the left side of (7) add to 0, and hence

8 =0.
" The preceding argument is the basis for the envelope algorithm. It shows that at each
point (x, y) of the envelope there is a value of « for which both (3) and (4) hold. This is
a necessary condition, and it can be satisfied by points which are not on the envelope.
Indeed, we can construct an example of this phenomenon by reparameterizing the
family of curves. The general idea behind this construction will be clear from the
specific case of the family of lines for the ladder problem.

Let s(«) be any differentiable function from (0, 7/2) onto itself. Then the equation

by n y B
coss(a) sins(a)

parameterizes the same family of lines as (2), and so has the same envelope. Applying
the envelope algorithm, we compute the partial derivative with respect to «, obtaining

xsins(a) s’ () B ycoss(a) s’ (o) B

0.
cos? s (o) sin’ s (a)

Clearly, this equation will be satisfied for any value of @ where s’ (o) = 0. If o is such
a point, then every point of the corresponding line
X y .
coss(ax)  sins(ax)

satisfies the two conditions of the envelope algorithm. That is, the entire line segment
corresponding to a* will be produced by the envelope algorithm. No such line is actu-
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ally included in the boundary of €2, nor can any such line be tangent to all the lines in
the family. This illustrates how the envelope algorithm can produce extraneous results.

A more complete discussion of these technical points can be found in [4, 19]. In
particular, conditions that can give rise to extraneous results from the envelope algo-
rithm are characterized. As Courant remarks, once the envelope algorithm produces a
curve, “it is still necessary to make a futher investigation in each case, in order to dis-
cover whether it is really an envelope, or to what extent it fails to be one.” In practice,
graphing software can often give a clear picture of the envelope of a family of curves,
and so guide our understanding of the results of the envelope algorithm.

A technical point of a slightly different nature concerns the relationship between
the envelope of a family of curves, and the boundary of the region that family encom-
passes. By definition, the envelope is a curve which is tangent at each of its points
to some member of the family. This is the definition used to justify the envelope al-
gorithm. But the curve we are interested in for the ladder problem is defined as a
boundary curve. How are these two concepts related? Visually, it appears obvious that
at each point of the boundary of €2, the tangent line is a member of the family of lines
defining €2. We substantiate this appearance as follows.

Since each line segment is contained within the region €2, none of the lines can
cross the boundary curve. On the other hand, each point of the boundary must lie on
one of the lines. To see this, consider a boundary point P, and a sequence of points
P; in Q converging to P. Each point P; is on a line for some parameter value o, and
these values all lie in the interval [0, 7r/2]. So there is a convergent subsequence o,
with limit . Now by the continuity of (2), P = lim P;, is a point on the line with
parameter o*. Since this line cannot cross the boundary curve at P, it must be tangent
there.

This suggests as a general principle that the boundary of a region swept out by
a family of curves lies on the envelope for that family. As in the earlier discussion,
some caution is necessary. Here, it is sufficient to assume that the boundary curve is
smoothly parameterized by «, the parameter defining the family of curves. On any arc
where this is true, the boundary curve will indeed fall along the envelope. On the other
hand, consider the following:

F(x,y,a) = x>+ y*> —sin’a.

This describes a family of circles centered at the origin, with radius varying smoothly
between 0 and 1. The region swept out by the family of circles is the closed unit disk
x? + y? < 1, and the unit circle is the boundary curve. But the unit circle is not an
envelope for the family of circles. What went wrong? Arguing as above, we can again
assign a value of « to each point of the boundary curve. But to do this continuously,
we have to take « to be constant, say o« = 7r/2. Then the entire boundary is one of
the curves in the family, but it is not parameterized by «. Notice as well that in this
example, the curve for « = /2 also satisfies the equation ‘;—g = 0. Thus, while the
envelope algorithm fails to produce the envelope in this example, it does locate the
boundary of the region.

Relating the envelope to the boundary also gives a different insight about why the
envelope technique works. View (3) as defining a level surface S of the function F in
xya space. The family of curves is then defined as the set of level curves for this sur-
face. At the same time, the region 2 swept out by the family of curves is the projection
of S on the xy plane. Now suppose A is a point on S that projects to a point P on the
boundary of 2. The tangent plane to S at A must be vertical and project to a line in
the xy plane. Otherwise, there is an open neighborhood of A on the tangent plane that
projects to an open neighborhood of P in the xy plane, and that puts P in the interior
of Q. So the tangent plane is vertical. That implies a horizontal normal vector to § at
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A. But that means that the gradient of F, which is normal to the surface at each point,
must be horizontal at A. This shows that the partial derivative of F' with respect to «
vanishes at A, which is the derivative condition of the envelope algorithm.

As a final topic in this section, I cannot resist mentioning one more way to think
about the envelope of a family of curves. The idea is to consider a point on the envelope
as the intersection point of two neighboring members of the family. Each « gives us
one member of the family of curves, and the intersection of curves for two successive
values of « gives a point on the envelope. Of course, that is not literally possible, but
we can implement this idea using limits. Just express the intersection of the curves C,
and C,, as a function of & and «, and take the limit as & goes to 0. It is instructive
to carry this procedure out for the example of the ladder problem. It once again yields
the envelope as the astroid (1). In the process, one can observe differentiation with
respect to « implicitly occuring in the calculation of the limit as 4 goes to 0. Indeed
Courant [4] uses this idea to provide a heuristic derivation of the envelope algorithm,
before developing a more rigorous justification. In contrast, Rutter [19] terms this the
limiting position definition of envelope, one of three closely related but distinct defini-
tions that he considers. He also provides the following interesting example of a family
of circles with an envelope, but for which neighboring circles in the family are disjoint.

Begin with the ellipse

X2 2

) + o 1
and at each point, compute the osculating circle. This is the circle whose curvature
matches that of the ellipse at the specified point, and whose center and radius are the
center and radius of curvature of the ellipse. The family of osculating circles for all
the points of the ellipse is the focus for this example. This situation is illustrated for
an ellipse with @ = 8 and b = 4 in FIGURE 5, which shows the ellipse and several
members of the family of circles.

N

/

Figure 5 Circles of curvature for an elliptical arc

It is apparent from the construction of this example that the original ellipse is tan-
gent to each of the circles in the family, and so is an envelope for the family. But
the ellipse can not be obtained as the limiting points of intersections of neighboring
circles. In fact, the neighboring circles are disjoint! This surprising state of affairs is
shown in FIGURE 6, with an enlarged view in FIGURE 7.

This same example also exhibits some of the other exceptional behaviors that have
been discussed above. One can show that the original ellipse does satisfy the two con-
ditions specified in the envelope algorithm, and so the algorithm would properly iden-
tify the envelope for this family of circles. But the entire circles of curvature for each
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i
N

Figure 6 Neighboring circles are disjoint

-

Figure 7 Closeup view of neighboring circles

of the vertices ((£a, 0), (0, b)) also satisfy the conditions of the envelope algorithm,
although these circles are not part of the envelope. And these circles also contain the
boundary of the region swept out by the family of circles. These properties can be ob-
served in the next two figures, defined by two different ellipses. Note also how visually
striking these figures are.

Figure 8 Family of circles for an ellipse Figure 9 Family of circles for another
ellipse

Experimenting with figures of this sort can convey a good deal of understanding
of the properties of envelopes discussed above, and I highly recommend it. Modern
graphical software is ideally suited to this purpose. For the family of circles in the
preceding example, graphical exploration is abetted by the following formulae ([19, p.
192]). Identify one point of the ellipse as (a cos «, b sin «). Then the radius of curva-



VOL. 80, NO. 3, JUNE 2007 173

ture at that point is given by

(a*sin* a + b? cos? a)?/?
ab

and the center of the circle of curvature is

a* — b? 5 br—a?® 5
cos” «, sin"« ) .
a b

Extending the ladder problem

A slight variation on the ladder problem is illustrated in FIGURE 10, with a rectangular
alcove in the corner where the two hallways meet. The same configuration might occur
if there is some sort of obstruction, say a table or a counter, in one hallway near the
corner. As before, the problem is to find how long a line segment will go around this
corner.

(c.d)
(a,b)

X

Figure 10 Family of circles for another ellipse

Here, the envelope method again provides an immediate solution. Consider again
the region Q2 swept out by a family of lines of fixed length L. If this region avoids
both points (a, b) and (c, d), then the segment can be moved around the corner. As
L increases, the envelope (1) expands out from the origin. The maximal feasible L
occurs when the envelope first touches one of the corner points (a, b) and (c, d). This
shows that the maximal value of L is given by

Lunge = min {(@* + 0772 (& + &Py

Going a bit further in this direction, we might replace the inside corner with any
sort of curve C (see FIGURE 11). The ladder problem can then be solved by seeking
the point (x, y) of C for which f(x,y) = x*? + y?/* is minimized. Unfortunately,
this plan is not so easy to execute. For example, an elliptical arc is a natural choice for
the curve C. But even for that simple case the analytic determination of the minimal
value of f appears quite formidable, if not impossible. On the other hand, if C is a
polygonal path, we need only find the minimum value of f at the vertices.

The couch problem. Extending the problem in a different direction, we can make
the situation a bit more faithful to the real world by recognizing that a ladder actually
has some positive width. Thus, in the idealized geometry of the problem statement,
perhaps we should try to maneuver a rectangle rather than a line segment around the
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X

Figure 11 Ladder problem with a curve in the corner

corner. If the width of the rectangle is fixed at w, what is the greatest length L that
permits the rectangle to go around the corner?

This version of the problem also provides a reasonable model for moving bulkier
objects than ladders. For example, trying to push a desk or a couch around a corner
in a corridor is naturally idealized to the problem of moving a rectangle around the
corner in FIGURE 1. This is the motivation given by Moretti [17] in his analysis of
the rectangle version of the ladder problem. In honor of his work, we refer to the
rectangular version hereafter as the couch problem. It should not be confused with the
sofa problem, which concerns the area of a figure to be moved around a corner.

Moretti’s analysis mimics the standard solution to the ladder problem. Thus, rather
than looking for the longest couch that will go around the corner, he seeks the shortest
couch that will get stuck. This occurs when the outer corners of the rectangle touch
the outer walls of the corridor, and the inner edge touches the inside corner point, as
illustrated in FIGURE 12. Using the slope as a parameter, Moretti reduces the problem
to finding a particular root of a sixth degree polynomial.

(a,b)

X

Figure 12 This couch is stuck

For the couch problem, as for the ladder problem, the direct approach using en-
velopes is illuminating. Indeed, we again make use of the astroid, and one of its par-
allel curves. Here, a parallel curve means one whose points are all at a fixed distance
from a given curve. From each point P on the given curve C, move a fixed distance
w along the normal vector to locate a point Q, being careful to choose the direction
of the normal vector consistently. The locus of all such Q is a curve parallel to C at
distance w. Parallel curves are discussed in [19].

For the couch problem, the envelope we need is parallel to the envelope we found
for the ladder problem. This leads to the following appealing geometric interpretation.
Let L be the longest rectangle of width w that can be moved around a corner as in the
original ladder problem. Then the boundary of €2 (as in FIGURE 2) must be tangent to
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the circle of radius w centered at the point (a, b). That is, w must be the distance from
the corner point (a, b) to the astroid (1). Algebraically, this approach has an appealing
simplicity, up to the point of actually finding a solution. Unfortunately, that requires
solving a sixth degree equation, which is essentially equivalent to the one considered
by Moretti.

On the other hand, the geometric setting of the envelope approach provides a simple
method for parameterizing a family of rational solutions to the couch problem. That
is, we can specify an infinite set of triples (a, b, w) such that the couch problem has an
exact rational solution L. This partially answers one of Moretti’s questions. In fairness,
though, a similar parameterization can be developed using Moretti’s method.

To apply the envelope method to the couch problem, we adopt the same strategy as
for the ladder problem. Consider the following process for moving a rectangle around
a corner. Initially, the rectangle is aligned with the walls of the corridor, so that the
bottom of the rectangle is on the x axis and the left side is on the y axis. Slide the rect-
angle in such a way that the lower left-hand corner follows the y axis, while keeping
the lower right-hand corner on the x axis. Thus, the bottom edge of the rectangle fol-
lows the exact trajectory of the segment in the ladder problem, sweeping out the region
2, as before. But now we want to look at the region swept out by the entire rectangle.
The upper boundary of this region is the envelope of the family of lines corresponding
to the motion of the top edge of the rectangle. For a couch with length L and width w,
these lines are characterized as follows. Begin with a line in the family for the original
ladder problem, whose intersection with the first quadrant has length L. Construct the
parallel line at distance w (and in the direction away from the origin). We seek the
envelope of the family of all of these parallel lines.

As before, we parameterize the lines in this new family in terms of the angle « be-
tween such a line and the (negatively directed) x axis. The parallel unit vector is given
by m = (—cos«, sin«), and the normal unit vector (pointing into the first quadrant)
isn = (sin«, cos «). These vectors provide a simple way to define a line at a specified
distance d from the origin: begin with the line through the origin parallel to m, and
translate by dn. That defines a point on the line as

(x,y) =tm+dn.
Taking the dot product of both sides of this equation with n thus gives
sinax +cosay =d.
Lines in the original family are described by (2), which we rewrite as
sinax +cosay = L sina cosa.

This line is at a distance L sin« cos « from the origin. Now we want the parallel line
that is w units further away. The equation for that line is evidently

sinex +cosay =L sina coso + w.
To make use of the envelope algorithm, let us define the function
G(x,y,a) =sinax +cosay— L sina cosa — w.

Then, thinking of « as a fixed value, the equation G(x, y, ) = 0 defines one line in
the family. Similarly, with

F(x,y,a) =sinax +cosay— L sina cosw
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we obtain the lines in the original family by setting F'(x, y, o) = 0. It will be conve-
nient in what follows to express these functions in the form

F(x,y,a) =n-(x,y) — L sina cosa
G(x,y,a)=n-(x,y) — L sina cosa — w

Our goal is to find the envelope for the lines defined by G, (hereafter, the envelope
for G). According to the envelope algorithm, we should eliminate « from the equations

Gx,y,a) =0
0
o

But rather than apply this directly, we can use the fact that we know the envelope for F'.
In fact, since each line in G’s family is parallel to a corresponding line in F’s family,
and at a uniform distance w, it is not surprising that the envelope of G is parallel to the
envelope of F, and at the same distance. That is, if (x, y) is on the envelope of F, then
the corresponding point of the envelope of G is w units away in the normal direction.

To make this more precise, let us consider a point (x, y) on the envelope of F.
There is a corresponding « such that (x, y, «) is a zero of both F' and ‘;—5 Then (x, y)
is on the line with parameter «, which is tangent to the envelope of F at (x, y). Thus,
at this point, the line and the envelope share the same normal direction. As observed
earlier, the unit normal is given by n = (sinc, cos«). We will now consider a new
point (x’, y') = (x, y) + wn. We wish to show that (x’, y’) is on the envelope of G.

To that end, observe that F(x, y, «) = G(x, y’, @) and %(x, y, ) = %(x’, v, a).
To justify the first of these equations,

Gx,y,a) =0

Gx',y,a)=n-(x',y)— L sina cosa — w
=n-[(x,y)+wn]—L sinoe cosoe —w
=n-(x,y)+w— L sina cosa —w

=F(x,y, a)

To justify the second equation, we observe first that since F and G differ by a constant,
they have the same derivatives. Also, note that 3—: = —m. This gives g(x, y,a) =

%(x, y,a) = —m- (x,y) — L(cos’ o — sin” «). Now we can write

G
a—(x’, y',a) = —m - [(x, y) + wn] — L(cos® & — sin® o)
o

=-m- (x,y) — L(cos* o — sin’ )
_OF
T

Together, these results show that (x, y) is on the envelope of F if and only if (x', y') is
on the envelope of G, and that in each case the points (x, y) and (x’, y’) correspond to
the same value of «. In fact, this result reflects a more general situation: If the family
G consists of parallels of the curves in F, all at a fixed distance w, then the envelope
for G is the parallel of the envelope of F, at the same distance w. In the context of
the couch problem, we can find the needed envelope of G as a parallel to the known
envelope of F.

Based on earlier work, we know that the envelope of F is parameterized by the
equations

(x,y,a).



VOL. 80, NO. 3, JUNE 2007 177

x = Lcos’a

y = Lsin’ a.
That leads immediately to the following parametric description of the envelope of G :

x = Lcos’a + wsina

y = Lsin’ @ 4+ wcos a.

For the solution L of the couch problem, the point (a, b) must lie on the envelope of G.
Therefore, we can find L (and also find the critical value of «) by solving the system

a=Lcos’a+wsinw

b = Lsin’ o + wcosa.
This leads readily enough to an equation in « alone:
.3 3 ) 2
asin” o — bcos’ @ = w(sin“ o — cos” ). (8)

At this point, finding « appears to depend on solving a sixth degree polynomial equa-
tion. To derive such an equation, substitute x for sina and +/1 — x2 for cos & in (8) to
obtain

ax® —b(1 —x»H¥? =w@2x? - 1).

Isolating the term with the fractional exponent and squaring both sides then leads to
the equation

(@* + b*)x8 — dawx® + (4w? — 36%)x* + 2awx® + 3b* — 4wH)x* + w? —b* = 0.

It is is easy to solve this equation numerically (given values for a, b, and w), and very
likely impossible to solve it symbolically.

As mentioned, the foregoing analysis leads to a nice geometric interpretation for the
solution. If (a, b) is on the envelope of G, then there is a corresponding point (x, y)
on the envelope of F. We know that (x, y) is w units away from (a, b), and that the
vector between these two points is normal to the envelope of F. This shows that the
circle centered at (a, b) of radius w is tangent to the envelope of F at (x, y).

Visually, we can see how to find the maximum value of L. Start with a small enough
L so that the astroid (1) stays well clear of the circle about (a, b) of radius w. Now
increase L, expanding the astroid out from the origin, until the curve just touches the
circle. When that happens, the corresponding value of L is the solution to the couch
problem. See FIGURE 13.

The visual image of solving the couch problem in this way is reminiscent of La-
grange Multipliers. Indeed, what we have is the dual of a fairly typical constrained
optimization problem: find the point on the curve (1) that is closest to (a, b). The vi-
sual image for that problem is to expand circles centered at (a, b) until one just touches
the astroid. Our dual problem is to hold the circle fixed and look at level curves for in-
creasing values of the function f(x, y) = x*? + y?/3. We increase the value of f until
the corresponding level curve just touches the fixed circle. This geometric conceptu-
alization is associated with the following optimization problem: Find the minimum
value of f(x, y) where (x, y) is constrained to lie on the circle of radius w centered at
(a, b). We will return to the idea of dual problems in the last section of the paper.
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X

Figure 13 Maximizing L geometrically

Let us examine more closely the Lagrangian-esque version of the couch problem.
We wish to find a point of tangency between the following two curves

X 4y = 2
(x —a)’ +(y —b)* =w

For each curve, we can compute a normal vector as the gradient of the function on the
left side of the curve’s equation. Insisting that these gradients be parallel leads to the
following additional condition

xPx—a)y=y"(y —b).

In principle, solving these three equations for x, y, and L would produce the desired
solution L to the couch problem. Or, solving the second and third for x and y, and
then substituting those values in the first equation, also would lead to the value of L.
Unfortunately, every approach appears to lead inevitably to a sixth degree equation.

While the envelope method does not seem to provide a symbolic solution to the
couch problem, it does provide a nice procedure for generating solvable examples.
Here, we will begin with a value of L and produce a triple (a, b, w) so that L is a
solution to the (a, b, w) couch problem. To begin, we generate some nice points on
the astroid x*/* + y*3 = L?/? using Pythagorean triples. Specifically, if r* + s* = 12,
we can take x = r3, y = 5% and L = ¢* to define a point on an astroid. In particular,
we can generate an abundance of rational points on astroids. Notice that the original
Pythagorean triple need not be rational. For example, if (r, s,7) = (3,4,5)/ J5, we
find (27/5, 64/5) as a rational point on the astroid curve for L = 25.

Now the equations x = r3, y = s> are closely related to the parameterization

x = Lcos’« y=Lsin3a

of the astroid. As a result, we can recover « from the equations

r . S
cosa = — Sino = —.
t 1

N r

This in turn gives us the normal vector n = (3, 7), and hence, for any value of w, leads
to the point (x’, y’). Define that point to be (a, b). It necessarily lies on the envelope for
G. This shows that the L for the astroid constructed at the outset solves the (a, b, w)
couch problem. We formalize these arguments in the following theorem.
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THEOREM. For any positive pythagorean triple (r, s, t) and any positive w define

3 N
a=r +w;

b=s+w-
=5 —|—w?

L=1¢

Then L is the solution to the (a, b, w) couch problem.

For example, with (r,s, 1) = (3,4, 5)/~/5 and w = 2, the equations above give
(a,b) = (7,14) and L = 25. So for a rectangle of width 2, 25 is the maximum length
that will fit around the corner defined by the point (7, 14). In general, if (v', s',¢') is a
rational Pythagorean triple, and if u° is rational, then taking (r, s, ) = u(+’, s, t') and
rational w produces rational values of a, b, and L, as well as a rational point (x, y)
where the astroid meets the circle centered at (a, b) of radius w.

The preceding example, where L = 25 is the solution of the (7, 14, 2) couch prob-
lem, was given by Moretti. He mentioned that such examples are relatively rare, and
asked for conditions on a, b, and w that make the (a, b, w) couch problem exactly
solvable. The theorem above provides a partial answer to Moretti’s question, by pro-
viding an infinite family of such triples. It would be nice to know whether every ra-
tional (a, b, w) with rational solution L to the couch problem arises in this way. If the
critical value of « corresponds to a rational point (x, y) on the astroid (1), then a, b,
w, and L are related as in the theorem. But there might be rational (a, b, w) for which
the solution to the couch problem is also rational, but which does not correspond to a
rational point (x, y).

The envelope approach leads in a natural way to the theorem, and provides a nice
geometric interpretation of the couch problem solution. But it should be observed that
Moretti’s approach can also lead to an equivalent method for parameterizing triples
(a, b, w) with rational solution L. He formulates the problem in terms of a variable
m (corresponding to cota in this paper) and derives a sixth degree equation in m
with coefficients that depend on a, b, and w. If that equation is solved for w, one
can again parameterize solutions in terms of Pythagorean triples. From this stand-
point, the envelope method does not seem to hold any advantage over Moretti’s earlier
analysis.

Duality in the ladder problem

In discussing the tangency condition for an astroid and a circle, the idea of dual opti-
mization problems was briefly mentioned. As a concluding topic, we will look at this
idea again.

Segalla and Watson [21] discuss what they call the flip side of a constrained opti-
mization problem in the context of Lagrange multipliers. For example, in seeking to
maximize the area of a rectangle with a specified perimeter, we have an objective func-
tion (the area) and a constraint (the perimeter). At the solution point, the level curve
for the extreme value of the objective function is tangent to the given level curve of the
constraint function. Here, the roles of the objective and constraint are symmetric, and
can be interchanged. Given the maximal area, we can ask what is the minimal perime-
ter that can enclose a rectangle having this area. The solution corresponds to the same
point of tangency between level curves of the objective and constraint functions. Thus,
we see that the problem of maximizing area with a fixed perimeter, and minimizing
the perimeter with a fixed area are linked.
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Maximizing area with fixed perimeter is the famous isoperimetric problem (see
Blasjo [2] for a beautiful discussion), and in that context minimizing the perimeter
with fixed area is referred to as the dual problem. Duality in this sense corresponds
to Segalla and Watson’s idea of flip side symmetry. It is also reminiscent of the idea
of duality in linear and non-linear programming. There, although the primal and dual
optimization problems occur in different spaces, one again finds the idea of linked
problems whose solutions somehow coincide.

Duality permits information about one problem to be inferred from information
about its dual problem. This property is important in both the isoperimetric problem
and in linear programming. As Segalla and Watson point out, a solution to an initial
optimization problem immediately leads to a corresponding statement and solution of
a dual problem. Thus, discovering that a rectangle with perimeter 40 has maximal area
100, also tells us at once that a rectangle with area 100 has minimal perimeter 40. But
there is another way to use duality. If you are unable to solve an optimization problem,
try to solve the dual.

Here is how this works for the perimeter-area problem. Imagine that we do not
know how to maximize the area of a rectangle with perimeter 40. The dual problem is
to minimize the perimeter subject to a given area, but of course we do not know what
that fixed area should be. So we solve the general problem for a fixed area of A. That
is, we prove that area A occurs with a minimal perimeter of 4v/A. Now relate this to
the original problem by insisting on a perimeter of 40. That forces A = 100, and tells
us this: for area 100, the minimal perimeter is 40. The dual statement now solves the
original problem.

Segalla and Watson give several examples of pairs of dual problems. In addition to
the area-perimeter example mentioned above, they discuss the milkmaid problem: find
the minimum distance the milkmaid must walk from her home to fetch water from
a river and take it to the barn. In this case the dual problem fixes the length of the
milkmaid’s hike, and minimally shifts the river to accommodate her. They also give
the example of the ladder problem, but do not describe the dual. Indeed, they ask for an
interpretation of the dual ladder problem. Let us answer this question using envelopes,
and see how the dual version leads to another solution of the ladder problem.

Segalla and Watson use the standard approach to the ladder problem—finding the
minimal length segment that will get stuck in the corner. We formulate this as a con-
strained optimization problem in terms of variables u and v, interpreted as intercepts
on the x and y axes of a line segment in the first quadrant. The objective function,
f(u,v) = ~/u*>+ v?, is the distance between the intercepts. The goal is to minimize
this distance subject to the constraint that the line must pass through (a, b).

For the dual problem, if we hold f fixed, and look at varying values of the con-
straint function, what does that mean? An answer will depend, naturally, on how the
constraint g is formulated. Here is one approach. A line with intercepts u and v satisfies
the equation

XY

Sil=1
u v

From this equation, the condition that (a, b) lie on the line is

a. by

u v
Accordingly, define g(u, v) = a/u + b/v. Now observe that g(u, v) = ¢t means that
(a/t, b/t) lies on a line with intercepts u and v. That is, g measures the (reciprocal of
the) distance from the origin to the line for u and v along the ray through (a, b). This
gives the following meaning to the dual problem: Look at all the lines with intercepts u



VOL. 80, NO. 3, JUNE 2007 181

and v, where fixing the value of f means that the distance between these intercepts is
constant. Among all these lines, find the one whose distance from the origin, measured
in the direction of (a, b) is a maximum.

The by-now-familiar astroid appears once again as the envelope of a family of lines.
Holding f constant with value L, we are again considering the family of line segments
of length L with ends on the positive x and y axes, filling up the region 2. The point
that maximizes g will now be the furthest point you can reach in  traveling on the
ray from the origin to (a, b). That is, the solution occurs at the intersection of the ray
with the envelope (1).

The solution point will be of the form (a/t, b/t) where t is the optimal value of
g. Substituting in (1), we find t = ((a/L)*? + (b/L)*/?)*. This gives us the optimal
value of g for the dual problem, in terms of L. To return to the primal problem, we
have to choose the value of L that gives us the original constraint value for g, namely
g =1.Sowitht = ((a/L)** + (b/L)*?)*? = 1 we again find L = (a?? + b*/?)3/2.

It is interesting that the ladder problem has so many formulations. The usual ap-
proach is to reverse the original problem, so that we seek a minimal line that cannot
go around the corner rather than a maximal line that will go around the corner. The
envelope approach presented here deals directly with the problem as stated, finding the
maximum line that will fit around the corner. A third approach is to take the dual of the
reversed version, viewed as an example of constrained optimization. Although all of
these approaches are closely related, each contributes a slightly different understand-
ing of the problem.
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