186 MATHEMATICS MAGAZINE

Leveling with Lagrange: An Alternate View
of Constrained Optimization

DAN KALMAN

American University
Washington, D.C. 20016
kalman@american.edu

In most calculus books today [11, 14, 15], Lagrange multipliers are explained as fol-
lows. Say that we wish to find the maximum value of f subject to the condition that
g = 0. Under certain assumptions about f and g, the Lagrange multipliers theorem as-
serts that at the solution point, the gradient vectors V f and Vg are parallel. Therefore,
either V f = AVg for some real number A, or Vg = 0. Combined with the equation
g = 0, this gives necessary conditions for a solution to the constrained optimization
problem. We will refer to this as the standard approach to Lagrange multipliers.

An earlier tradition approaches this subject far differently. It defines a new func-
tion, F = f + \Ag, that incorporates both the objective function and the constraint,
and in which X is considered to be an additional variable. Here, F is referred to as a
Lagrangian function. The conditions for F to achieve an unconstrained extremum are
then determined, and these become necessary conditions for a solution to the original
problem. This is the Lagrangian function approach to Lagrange multipliers.

Both approaches produce the same necessary conditions, and lead to identical so-
lutions of constrained optimization problems. The second approach is closer to the
original spirit of Lagrange’s work, and is popular in introductory works on mathe-
matical methods in economics, as well as calculus texts with an applied or business
emphasis. Unfortunately, it is often presented with an attractive, but fundamentally
incorrect, intuitive justification [1, 2, 6, 7]—that the problem of finding a maximum
(say) of f subject to a constraint is transformed into a search for a maximum of F
without constraint. The problem is, a constrained maximum of f need not correspond
to a local maximum of F. The Lagrange theorem asserts the existence of a correspond-
ing critical point for F, but says nothing about whether this critical point is actually
an extremum. And as we will see, further examination reveals an unexpected result:
the critical point of F' that satisfies the Lagrange condition is never a local extremum.
Therefore, the idea that a constrained optimum of f corresponds to an unconstrained
optimum of the Lagrangian F is never correct. For ease of reference, this mistaken
idea will be termed the transformation fallacy, highlighting the intuition that incorpo-
rating the constraint into the objective function transforms a constrained optimization
problem into an unconstrained optimization problem.

The perpetuation of a flawed intuitive explanation of the Lagrangian approach is a
shame, not least because it represents a dilution of the power of a true intuition. At
its heart, the idea that the constrained problem is transformed into an unconstrained
problem doesn’t make any sense. (How could it? It is incorrect!) And yet, on casual
consideration, the idea of imposing the constraint implicitly is seductively plausible.
There is even an informal proof that seems to justify this idea.

Happily, there is an alternate justification of the Lagrangian function approach to
constrained optimization. It provides a memorable geometric intuition and has a catchy
name, Lagrangian leveling. In contrast to the central idea of the transformation fallacy,
which is necessarily vague, Lagrangian leveling directly confronts (and remedies) the
true source of difficulty: at a constrained maximum, the partial derivatives of the ob-
jective function need not vanish.
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The goal of this paper is to draw attention to the transformation fallacy, and to the
idea of Lagrangian leveling. A specific example illustrating the fallacy and a critique
of the rationale behind the fallacy will be presented. We will also see that leveling
leads to both a proof of the Lagrange multiplier theorem and an interpretation of the
value of the multiplier A at the extremum.

The Lagrangian function approach For the sake of concreteness, let us review the
standard approach to Lagrange multipliers in a specific context. Suppose that f(x, y)
and g(x, y) are differentiable functions on a domain in R?, and that we wish to find the
maximum of f subject to the constraint g = 0. As outlined in the introduction, if the
solution occurs at a point (x, y) where Vg # 0, then there must exist a real A such that
g(x,y)=0and Vf(x,y) =AVg(x, y), giving necessary conditions for the solution.
In the Lagrangian function approach we arrive at essentially the same conditions but
follow a different route. Define F'(x, y,A) = f(x, y) + Ag(x, y). Now F is regarded
as a function of three variables. Under the influence of the transformation fallacy, we
observe that a necessary condition for F' to achieve a local maximum is that all of
its partial derivatives vanish. (The fallacy may be avoided at this stage by asking for
critical points, rather than local maxima.) Thus we arrive at the system of equations
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The last equation, which is imposed as a constraint in the standard approach, arises
here from the partial derivative d F/dA. It shows that for any critical point (x, y, ) of
F, the components x and y satisfy the constraint equation g = 0.

Justifying Lagrange multipliers

In the standard formulation, the key idea is that V f and Vg are parallel at the solution
point (x*, y*). This can be justified in a variety of ways. For example, suppose r(z)
parameterizes the constraint curve, with (x*, y*) = r(¢*). Then since g(r(t)) is con-
stant and f(r(¢)) has a maximum at ¢*, both of their derivatives vanish at #*. Applying
the chain rule there, both V f and Vg are orthogonal to r’ and so are parallel. A less
formal argument uses the directional derivative. At the point of the constraint curve C
where f assumes a maximum, the derivative of f in the direction of C must vanish.
This shows that V f and the curve’s tangent vector are orthogonal. On the other hand,
since C is a level curve of g, we also have Vg orthogonal to C at every point, and the
result follows as before.

Our understanding of vectors, and in particular, of V f as pointing in the direction
of steepest increase of f, provides other justifications. At a maximum, V f must be
perpendicular to C for otherwise, its nonzero projection along C would point in the
direction of increase of f. Or, in the succinct formulation of Farris [3],

We think of V f as the “desired direction” and Vg as the “forbidden direction.”
If you are at a relative maximum of f on the constraint g = 0, then this can only
be because the direction you would like to go to get more f, namely V f, lines
up perfectly with the forbidden direction.



188 MATHEMATICS MAGAZINE

These arguments all depend on properties of the gradient, and there are several
others of a similar nature [8]. There are other arguments from viewpoints that are de-
cidely different. One involving penalty functions is most natural in the context of a
minimization problem. So, suppose we wish to minimize f(x, y) subject to the con-
dition g(x, y) = 0. We form the function F(x, y) = f(x,y) + og(x, ), and seek an
unconstrained minimum. We think of o as a penalty imposed for allowing g to assume
a positive value. The larger o is, the larger the penalty. Intuitively, by minimizing F for
ever larger values of o, we should be able to drive the solution toward a point where g
is zero and f is minimized. This can be used iteratively to seek numerical estimates for
contrained minima. It can also be used to justify the Lagrange multipliers technique,
and variants [5, pp. 255-261] [12].

Our final justification for Lagrange multipliers, like the penalty function approach,
takes a dramatically different point of view from the standard gradient-based argu-
ments. Pourciau [13] attributes this approach to a 1935 work of Carathéodory, and
refers to it as the Carathéodory Multiplier Rule. It applies most generally to the case
of n variables and n — 1 contraints, but we will consider it here in the case n = 2. |
find it amazingly simple and beautiful.

As before, we wish to maximize f(x, y) subjectto g(x, y) = 0. However, this time
we combine the two functions to define a mapping ® : R* — R?, given by

D(x,y) = (f(x,y), g, y).

This situation is illustrated in FIGURE 1. As depicted in the figure, we assume the axes
in the image plane are labeled u# and v, so that the mapping has the alternate definition

u= f(x,y)
v=g(x,y).

Now observe that the constraint set g = 0 is characterized precisely as the set of
points mapped by @ to the u axis. Therefore, maximizing f subject to g = 0 corre-
sponds to finding the point on the u axis in the range of ® that is as far to the right
as possible. If the constrained optimization problem has a solution at (x*, y*), then
(u*,0) = ®(x*, y*) must be on the boundary of the range. Otherwise, it would be
possible to go even further to the right.

y v

(%, %) ®

(f(x*, y%), 0)

u

Figure 1 Action of the mapping ®

Next, consider the derivative of ®, which can be expressed as the matrix
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Whenever d®(x, y) is invertible (or nonsingular), it is known from the theory of
differentiable functions that ® maps a neighborhood of (x, y) to a neighborhood of
@ (x, y). In particular, that would put ®(x, y) in the interior of the range. Thus, since
@ (x*, y*) is on the boundary of the range, we conclude that d® (x*, y*) is singular.
That means the matrix has dependent rows, so V f(x*, y*) and Vg(x*, y*) are parallel.

While this last justification is beautiful and elegant, it depends on a fairly well
developed mathematical sophistication, at the level of an advanced calculus course
say. The earlier arguments based on properties of the gradient are more accessible,
and would be suitable for a multivariable calculus class serving math, science, and
engineering students. However, in courses in mathematical methods for economics
and applied or business calculus, many of which do not emphasize vector methods,
the foregoing justifications for Lagrange multipliers may be out of reach. Perhaps this
contributes to the popularity of the Lagrangian function formulation for these classes.

For these students, it is easy to understand the attraction of the transformation fal-
lacy. It provides a memorable rationale for the Lagrange multipliers technique, builds
on prior knowledge of unconstrained optimization, and in the end leads to correctly
constituted necessary conditions for the solution. Often, it is presented with no jus-
tification beyond the vague idea that incorporating g into the objective function F
implicitly imposes the constraint on the optimization process. But why should that be?
Does the manner of incorporating g into F' matter at all? Is there a specific argument
to show why a maximum of F has anything to do with a constrained maximum of the
original function f?

I have seen a justification in more than one source along the following lines. Be-
cause 0F/dA = g, a maximum of F will have to occur at a point where g = 0.
Thus, maximizing F implicitly imposes the constraint condition. At the same time,
if F(x*, y*,A") is a local maximum of F, then it certainly is greater than or equal
to the values assumed by F at all nearby points, including those where g = 0. So,
since F and f are identical for the points where g = 0, we have actually found a local
maximum of f among such points.

Although this is all correct, it suffers from two major flaws. First, it turns out that
trying to maximize F is destined to fail, F* will not have any local maxima. Conse-
quently, the strategy of solving the original problem by finding the maximum of F
loses much of its appeal.

The second flaw is more subtle, and depends on a level of sophistication that is rare
among calculus students. Correctly understood, the Lagrange multipliers technique
provides a necessary condition for a solution of a constrained optimization problem.
This justifies how the technique is usually applied. We find all solutions to the La-
grange conditions, and then choose among them the point that solves our original
problem. This is valid because the Lagrange conditions are necessary: They must be
satisfied by the solution of the opimization problem.

There is one logically correct way to justify a necessary condition. You must as-
sume that a solution to the original problem is given, and then show that it also sat-
isfies the necessary conditions. In this light, we see that the rationale above for the
transformation fallacy is exactly backward. It begins with a point that is assumed to be
a local extremum of F (the proposed necessary condition), and then tries to argue that
such a point is a local constrained maximum of f. Even if F' had local extrema (and
it doesn’t), there would be no assurance that they include all local constrained max-
ima of f. In particular, there is no assurance that maximizing F will find the global
constrained maximum of f, which is what we ultimately wish to find.

An example The preceding argument refutes one proposed justification for the trans-
formation fallacy, but that is not enough to establish that it is indeed a fallacy. There-
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fore, let us consider an example. Specifically, we wish to see that an extremum of
a function f subject to a constraint need not correspond to an unconstrained local
extremum of the Lagrangian function F. Indeed, any example will do, because the
Lagrangian function (essentially) never possesses any local maxima or minima.

With that in mind, let us consider the following perfectly pedestrian application
of Lagrange multipliers. The problem is to find the point of the curve xy = 1 that
is closest to the origin. In the standard formulation, we must minimize f(x,y) =
x2 + y? subject to the constraint g(x, y) = 0, where g(x, y) = xy — 1. By symmetry,
we may restrict our attention to (x, y) in the first quadrant. The Lagrange multiplier
conditions (1) become

2x +1y =0
2y +2ix =0
xy = 1.

The only solution is (x*, y*, A*) = (1, 1, —2). Geometric considerations show that
(1, 1) is indeed the closest point of the curve xy = 1 to the origin.

Now we ask, does F(x,y,A) = x>+ y> 4+ A(xy — 1) have a local extremum at
(1, 1, —2)? To see that it does not, it will be enough to show that the restriction of F' to a
particular plane through (1, 1, —2) has a saddle point there. Then any neighborhood of
(1,1, —2) includes points where F assumes both greater values and lesser values than
F (1,1, —2), which can therefore be neither a local minimum nor a local maximum.

Consider the plane generated by unit vectors parallel to Vg(x*, y*) = (1, 1) and
the A axis. In (x, y, A) coordinates, the unit vectors are u = (1 /ﬁ, 1/ V2, 0) and
v = (0, 0, 1). Therefore, a point on the plane may be expressed parametrically as

r(s,t)=(1,1,-2)+su+1tv
= (1+5/vV2,145/v/2,1-2).

Note that (s, r) = (0, 0) corresponds to the point (1, 1, —2), where V F' is zero.

To restrict F to the plane, we define i (s, t) = F(r(s, t)). We know that & will have
a critical point at (0, 0). To see whether this is a local extremum, we use the second
derivative test [14, p. 794]. First, compute the composition F (r(s, 7)) to obtain

h(s, 1) = (V25 + 5%/2)t + 2.
The Hessian matrix of second partial derivatives,

Ph 0%h
952 9sor | _ [ ot s+N2
?h 0% _[s+f2 0 }
dsor  or2

has determinant —2 at (s, #) = (0, 0). Since it is negative, we know that %(s, t) has a
saddle point at the critical point (0, 0). This shows that F'(x, y, A) cannot have a local
maximum or minimum at (1, 1, —2). In fact, (1, 1, —2) and (—1, —1, —2) are the only
critical points of F, which therefore has no local maxima or minima.

This reveals the flaw in the transformation fallacy, which tells us to solve the con-
strained optimization problem by finding the unconstrained minimum of F. That is
impossible for no minimum exists. Nevertheless, the constrained problem has a solu-
tion.
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A theorem

What happened in the example always happens. For any objective function and con-
straint, the restriction of the Lagrangian function to a plane parallel to Vg(x*, y*)
and the A axis has a saddle point at (x*, y*, A*), as shown in the following theorem.
Although stated for functions of two variables, it extends naturally to functions of n
variables.

First, we will establish a few notational conventions. Partial derivatives will be
expressed using subscript notation, so f, is the partial derivative of f with respect
to x and fy, is the second partial derivative with respect to x and y. We will ab-
breviate ®(x*, y*) by ®* for any function ®. In particular, f* = f(x*, y*), Vf* =
VGt v, and f7 = fu Y0,

THEOREM. Let [ and g be functions of two variables, with continuous second
derivatives. Let F(x,y,)) = f(x,y) + Ag(x,y). Then, if (x*, y*,\*) is a criti-
cal point of F at which Vg* is not the zero vector, F must have a saddle point at
(x*, y*, A%).

Proof. At any critical point (x*, y*, 1*), all of the first partial derivatives of F van-
ish. This shows that g* = 0 and V f* + A*Vg* = 0. We also assume that Vg* is not
Zero.

Without loss of generality, we may assume (x*, y*) = (0,0) and Vg* points in
the direction of the x axis: these conditions may be brought about by translating
the x-y plane and rotating it about the A-axis, neither of which alters the character
of (x*, y*, A*) as a saddle point (or not). With these assumptions, Vg* = (g}, g;‘) =
(a, 0) for some a # 0.

Next we will consider the restriction of F' to the plane y = O in (x, y, A) space. Let

h(x,)) = F(x,0,A) = f(x,0) + rg(x, 0).
Then
Vh(x,2) = (fe(x,0) + Ag:(x,0), g(x, 0)).

This vanishes at (x, A) = (0, 1*), so (0, A*) is a critical point of A.
We show that (0, 1*) is a saddle point of /4 by using the second derivative test. We
need the Hessian matrix of second partial derivatives, which is defined by

_ | fex (%, 0) + Agex (x,0)  gx(x,0)

hxx hxk
B 8x(x,0) 0 ’

H(x’”z[m I

At the critical point, the determinant of the Hessian is det H (0, A*) = —(g¥)?, and
this is negative because we know g; # 0. Therefore, the second derivative test shows
that & has a saddle point at (0, A*). Hence F must have a saddle point at (x*, y*, 1),
as asserted. [ |

The theorem tells us that the Lagrangian function approach has nothing to do with
finding a local maximum of F, and in practice we know that is true. Rather, all the
critical points of F are found, and these are further examined to find the constrained
maximum of f. Along the way, no one ever checks to see which critical points are local
maxima of F. Otherwise, the transformation fallacy could not possibly persist. And in-
deed, specialists in optimization consider the preceding theorem common knowledge.
I’ve consulted several economics faculty who specialize in mathematical methods, and
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they were all well aware of the result. But the result deserves to be better known among
mathematicians, particularly the nonspecialists who teach Lagrange multipliers in cal-
culus classes.

The theorem also crystalizes in a dramatic way what is needed in an intuitive justi-
fication of the Lagrangian approach. Because F essentially never has local extrema, a
proper justification must explain why the critical points of F' (and in fact, really why
the saddle points of F') are significant. And it must do so without assuming that F is
maximized somewhere. The transformation fallacy does not provide such a justifica-
tion. Shortly we will see an intuitive argument that does. First, though, we take a brief
look at the history of the Lagrange multiplier technique.

What did Lagrange say?

In the original development of the multiplier method by Lagrange, it is the Lagrangian
function approach that appears, although without considering the multipliers to be
independent variables of the function. What I have called the standard approach is a
later development.

Interestingly, Lagrange did not initially formulate the multiplier method in the con-
text of constrained optimization, but rather in the analysis of equilibria for systems
of particles. He reported this application in Mécanique Analytique, published in 1788
and available now in English translation [9]. Using series expansions to analyze the
effects of perturbation at the point of equilibrium, Lagrange derives conditions on the
first order differentials for systems under very general assumptions. In the case that
the particle motions are subject to external constraints, he points out that the con-
straints can be used to eliminate some of the variables that appear in his differential
equations, before deriving the conditions for equilibrium. He goes on to observe that

the same results will be obtained if the different equations of [constraint], each
multiplied by an undetermined coefficient are simply added to [the general for-
mula of equilibrium]. Then, if the sum of all the terms that are multiplied by the
same differential are put equal to zero, as many particular equations as there are
differentials will be obtained [9, p. 60].

Next, he explains how this procedure can be “treated as an ordinary equation of
maxima and minima.” However, this last statement must be understood in the context
of Lagrange’s earlier remarks, where he is careful to point out that “the equation of a
differential set equal to zero does not always represent a maximum or minimum [9,
p- 55].” Thus, Lagrange must have intended to convey that the conditions rigorously
derived by his perturbation analysis could be found by formulating a Lagrangian func-
tion, and proceeding as if seeking a maximum or minimum. But there is no suggestion
that the equilibrium point must actually correspond to a maximum or minimum in gen-
eral, nor that the existence of such an extremum is necessary to establish the validity
of the equilibrium conditions.

Having developed the multiplier technique in the analysis of equilibria, Lagrange
proceeded to use it in other settings, notably in the calculus of variations [4]. Today’s
familiar application to constrained optimization problems was presented in two pages
in his Théorie des Fonctions Analytiques of 1797, nearly a decade after the initial work
with statics. As in the earlier work, Lagrange first establishes the conditions for a con-
strained extremum using series expansions. Then he points out that the conditions so
described can be obtained according to a general principle [10, p. 198]. In translation,
that principle runs as follows:
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When a function of several variables must be a maximum or a minimum, and
there are one or more equations relating these variables, it will suffice to add to
the proposed function the functions that must be equal to zero, multiplied each
one by an indeterminate quantity, and next to find the maximum or minimum as
if these variables were independent; the equations that one will find combined
with the given equations will serve to determine all the unknowns.

On casual inspection, this appears to be a statement of the transformation fallacy.
However, two points are significant. First, in saying to find the extremum as if the
variables were independent, Lagrange clearly does not consider these variables to in-
clude the multipliers. This is reflected not only by the context in which he uses the
phrase these variables, but also by his inclusion of the phrase combined with the given
equations. If the multipliers were considered as variables, there would be no need to
separately mention the constraint equations, which would appear as partial derivatives
with respect to the multipliers. Second, consistent with my earlier remarks, it seems
evident that Lagrange only advised proceeding as if seeking a maximum or minimum,
and that the key point is the assertion of the final clause: the variables can be found by
solving the given set of equations. Remember, too, that the validity of that assertion,
established in a separate argument, did not depend on the existence of an unconstrained
extremum at the solution point.

Apparently the idea of considering the multipliers as new variables for the optimiza-
tion problem originated elsewhere, probably when someone recognized that the partial
derivatives with respect to the multipliers are exactly the quantities that the constraints
hold at zero. To a reader with that observation in mind however, it is easy to imagine
that the quoted passage above, taken out of context, might encourage a belief in the
transformation fallacy.

Lagrangian leveling We come at last to my proposed rationale for the Lagrangian
function approach. The transformation fallacy says that the Lagrangian function is
a device by which a constrained problem becomes an unconstrained problem. An
equally memorable idea, and one that is correct, is that the Lagrangian is an approach
that levels the playing field.

To make this idea clear, let us consider once again the fundamental problem, to
maximize f(x,y) subject to g(x, y) = 0. Suppose that the solution point occurs at
(x*, y*). If we are very lucky, this will actually be a local maximum of f disregard-
ing the constraint. In this case the graph of f is a surface G with a high point at
(x*, y*, f(x*, y")), so the tangent plane is horizontal there. That is why we can find
such points by setting the partial derivatives equal to 0.

Usually, though, this is not what occurs in a constrained problem. As portrayed in
FIGURE 2, we can only consider points (x, y) on a curve C in the domain. The graph
of the restricted function f|¢ is a curve G¢ on surface G. The constrained maximum
occurs at a high point of G¢ but it is not a high point of G, and the tangent plane of
G is not horizontal there. Traveling along the plane in the direction of G we would
experience a slope of 0, because the curve has a high point, but traveling off of the
curve we can go even higher. In particular, traveling on the tangent plane perpendicular
to G ¢ the slope is not 0.

In order to rectify this problem, we would like to flatten out the graph of f, so that
the tangent plane becomes horizontal. In the process, we do not want to disturb G,
because that might change the location of the constrained maximum. But it should
be perfectly alright to alter the values of the function at points that are not on the
constraint curve. In fact, near the high point of G, we can imagine pivoting the graph
of f around the curve’s horizontal tangent line. If we pivot by just the right amount, the
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C:g=0

Figure 2 Constraint curve C in the domain of f, the graph G of f, and the graph Cg of
fle

tangent plane will become horizontal, and so detectable by setting partial derivatives
to zero. That is the image of leveling the playing field.

How do we put this into effect analytically? The simplest way to alter the values of
the function f is to add some perturbation. But we want the amount we add to be 0
along the constraint curve, so as not to alter f for those points. On the other hand, we
know that g is 0 along the constraint curve. So, adding g to f is the sort of perturbation
we need. It leaves the values of f unchanged along the constraint curve, but modifies
the values away from that curve. More generally, we can add any multiple of g to f and
achieve the same effect. That is the motivation behind defining for each A a perturbed
function

F(x,y) = f(x,y) +2g(x,y).

In this conception, we do not think of F as a function of three variables. Rather,
we have in mind an entire family of two variable functions, one for each value of the
parameter A. A representation of this situation is shown in FIGURE 3. The surface
marked A = 0 is the unperturbed graph of f. The other surfaces are graphs of different
members of the family of F functions. All of the surfaces intersect in the graph of
f over the constraint curve, so the constrained maximum is the high point on the
intersection curve.

The figure shows that choosing different values of A imposes just the sort of pivoting
action described earlier. Intuition suggests (and a little further analysis proves) that
there must actually be a choice of A that makes the tangent plane horizontal. That is,
if (x*, y*) is the location of the maximum value of f subject to the constraint g = 0,
then for some A it will be the case that V F (x*, y*) = 0. In that case, the following
equations must hold:

af
0x

of . . 08 . &
—(xa)’)‘F)»—(X,)’):O
dy dy

(x,)’)+)\a_(x,y)=0
X

g(x*,y") =0.
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Figure 3 Graphs of several members of the family of F functions

By finding every possible triple (x, y, A) for which these equations hold, we obtain a
candidate set that must contain the solution to the constrained optimization problem.
That is what the Lagrange multipliers theorem says.

With the concept of leveling, we can also rederive an interpretation of A at the
solution point, popular in the optimization literature for applications in economics [2,
pp. 376-377], [6, p. 611]. At the maximum point over the constraint curve, we know
that the directional derivative Dy, f in the direction of the curve is zero. And we are
assuming that the derivative D, f in the direction normal to the constraint curve is
not 0.

To level the tangent plane, we need to choose A so that F will have zero direc-
tional derivative normal to the curve. That is, for u normal to the curve, we want
Dy(f + 1g) = 0. Clearly, we need to choose . = —D,, f/D,g. This shows, by the
way, when A exists. We may take for u the unit vector in the direction of Vg. Then
Dyg = Vg -u = |Vg]|. In particular, D,g can only be 0 if Vg = 0. Otherwise, for
A = —Dy f/Dyg, the modified function F will have a horizontal tangent plane.

But there is also a meaningful interpretation of this choice for A. The ratio
D, f/D,g is the rate of change of the objective function f relative to a change in
the constraint function g. It shows, for a given perturbation of the point (x*, y*) or-
thogonally away from the constraint curve, how the change in f compares to the
change in g. The economists interpret this as the marginal change in the objective
function relative to the constraint. It indicates to first order, how the maximum value
will change under relaxation or tightening of the constraint.

Concluding remarks There is a vast literature on optimization. It covers in great
depth ideas that have been barely touched upon here, and far more. A good general
reference most closely related to the topics discussed in this paper is Hestenes [5]. This
provides a general discussion of Lagrange multipliers, including the transformation
of constrained to unconstrained problems through a process called augmentation, as
well as a detailed account of penalty functions. Although Hestenes does not use the
terminology of leveling, this idea is implicit in his treatment of augmentability. For a
general account of multiplier rules, I highly recommend Pourciau [13] (winner of a
Ford award).

An expanded version of the present paper appears in [8]. Among other things, it
gives examples of textbooks that encourage a belief in the transformation fallacy, im-
plicitly or explicitly, as well as several geometric arguments in support of the standard
approach to Lagrange multipliers.
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The image of leveling the graph of f using the Lagrangian function F offers an
attractive way to think about Lagrange multipliers. In this formulation, we find a clear
and convincing intuitive justification of the Lagrangian approach. It also makes the
existence of the necessary A completely transparent, while leading naturally to the
interpretation of A as the marginal rate of change of the objective function relative to
the constraint. This has the potential of enriching the insight of students, particularly
those interested in the applications of mathematics to economics. And it is certainly
superior to perpetuating the transformation fallacy.
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Editor’s Note: Unfortunately, an
error crept into our April issue
(82:2, p. 116). In the Proof With- Aa,b)
out Words: Ordering Arithmetic,
Geometric, and Harmonic Means,

the vertical line segment labeled Gla.b)

H(a,b) should stop at the hy-

potenuse of the triangle, and not go H(a, D)

all the way up to the circle. A cor-

rected image is shown here. Were-  §42 .4

gret the error. a L




