An Elementary Proof of Marden’s Theorem

Dan Kalman

What I call Marden’s Theorem is one of my favorite results in mathematics. It es-
tablishes a fantastic relation between the geometry of plane figures and the relative
positions of roots of a polynomial and its derivative. Although it has a much more
general statement, here is the version that I like best:

Marden’s Theorem. Let p(z) be a third-degree polynomial with complex coefficients,
and whose roots z,, 2o, and z3 are noncollinear points in the complex plane. Let T be
the triangle with vertices at 7y, Zp, and 73. There is a unique ellipse inscribed in T and
tangent to the sides at their midpoints. The foci of this ellipse are the roots of p'(z).

I call this Marden’s Theorem because I first read it in M. Marden’s wonderful
book [6]. But this material appeared previously in Marden’s earlier paper [S]. In both
sources Marden attributes the theorem to Siebeck, citing a paper from 1864 [8]. In-
deed, Marden reports appearances of various versions of the theorem in nine papers
spanning the period from 1864 to 1928. Of particular interest in what follows below is
an 1892 paper by Maxime Bocher [1].

In his presentation Marden states the theorem in a more general form than given
above, corresponding to the logarithmic derivative of a product (z — z1)"(z —
22)"2(z — z3)™? where the only restriction on the exponents m  is that they be nonzero,
and with a general conic section taking the place of the ellipse. For this discovery he
credits Linfield [4], who obtained it as a corollary to an even more general result
“established by the use of line coordinates and polar forms.” Marden asserts the de-
sirability of a more elementary proof, and proceeds to give one based on the optical
properties of conic sections.

Interestingly, Marden’s proof, which appears in basically the same form in both
his paper and his book, is incomplete for reasons that will be made clear below. A
closely related argument in Bocher’s paper is also incomplete, although in a different
way. By combining the two arguments, a complete proof of Marden’s Theorem is
obtained. Moreover, the proof is completely elementary, requiring very little beyond
standard topics from undergraduate mathematics. To be honest, there are rather a lot
of these topics required, spanning analytic geometry, linear algebra, complex analysis,
calculus, and properties of polynomials. To me, the way all of these topics weave
together is part of the charm of the theorem, and presenting the proof is the primary
motivation for this paper. In an on-line paper [3] a more completely self-contained
exposition is provided, with hypertext links to discussions of many of the necessary
background topics, as well as animated graphics dramatizing some of the geometric
ideas of the proof.

Before proceeding further, some additional observations may be illuminating. First,
it is possible that the unique inscribed ellipse mentioned in the theorem is actually a
circle. In this case the foci coincide, indicating that p’(z) has a double root. This case
can only occur if the circumscribing triangle is equilateral. In fact, this special case is
easy to verify by assuming that p’(z) has a double root, and deducing the form of p.
The roots of p are then seen to be vertices of an equilateral triangle centered at the
repeated root of p’.
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Second, the inscribed ellipse mentioned in the theorem is worthy of further con-
sideration. It is sometimes referred to as the maximum ellipse of the circumscribing
triangle, because it has the greatest area among all ellipses contained in the triangle.
This result is apparently due to Jakob Steiner (see Problem 98 in [2]). Weisstein [10]
refers to it to as the Steiner Inellipse of the circumscribing triangle, and describes
several of its interesting properties.

Finally, the uniqueness of the inscribed ellipse is important in the statement of Mar-
den’s Theorem if we wish to view it as a recipe for constructing the roots of p’ : start
with the triangle, inscribe the ellipse, find the foci. This conceptualization would not
make sense without uniqueness of the ellipse. Nevertheless, I do not regard the unique-
ness of the inscribed ellipse as part of the content of the theorem, considering it rather
as background knowledge. This is true to the spirit of both Bocher and Marden, who
treat the existence and uniqueness of such an ellipse as common knowledge. Bocher
even refers to it as the maximum ellipse of the triangle. Still, it should be recognized
that a completely self-contained presentation of Marden’s Theorem must include some
discussion of the ellipse. Both existence and uniqueness are addressed in [3].

PROOFS OF MARDEN AND BOCHER. For the sake of clarity, I will describe
the logical gap in Marden’s argument in the context of the theorem as I have stated
it above. This corresponds to the case of the more general result where m; = 1 for
Jj = 1,2, 3. Accordingly, let the polynomial p(z), it’s roots z;, z2, 23, and the triangle
T be as in my statement of Marden’s Theorem. Marden shows that an ellipse with foci
at the roots of p’ and which passes through the midpoint of one side of 7T is actually
tangent to the side there. By symmetry, this argument applies to any side of the triangle.
That is as far as Marden’s proof goes. What is missing is a verification that there is one
ellipse that is tangent at all three midpoints. The appeal to symmetry establishes the
existence of three ellipses, each with foci at the roots of p’, and each tangent to one
side of the triangle at its midpoint. To complete the proof, it must be shown that these
three ellipses are actually one and the same.

In Bocher’s proof there is no logical gap. He shows that under the circumstances just
described, an ellipse with foci at the roots of p’ and which is tangent at the midpoint
of one side of the triangle must also be tangent to the other two sides of the triangle.
Invoking an earlier result showing that this ellipse must also be centered at the centroid
of the triangle, he states: “Since only one conic can be drawn with a given point as
centre and tangent to three given lines, this ellipse must be the maximum ellipse”
(that is, the ellipse mentioned in Marden’s Theorem). Alas, here I discover a gap in
my understanding, even if there is no gap in the logic. As intuitively appealing as the
statement is, I am not familiar with this uniqueness property, although I suspect it
would be obvious to mathematicians of Bocher’s era, who were much more familiar
with properties of curves than we are today. No doubt, with a little effort it would be
possible to fill in this detail that Bocher brushes off with a mere mention. On the other
hand, it is appealing to combine elements of the proofs of Bocher and Marden, because
they are so similar. And as that leads to a complete and elementary proof, that is the
route we shall follow.

In overview, here is the organization of the hybrid proof. First, following Marden,
we will see that if an ellipse has foci at the roots of p’ and if that ellipse passes through
the midpoint of one side of the triangle 7', then it is actually tangent to that side at
the midpoint. This permits us to construct three ellipses, each of which is tangent to
one side of the triangle at its midpoint. Now consider one of these ellipses. Following
Bdcher, we will see that it is actually tangent to all three sides of the triangle. It remains
only to show that this one ellipse coincides with the other two ellipses. But suppose
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this were not so. Then at one of the other two sides the point of tangency is not the
midpoint. For that side there must therefore be a distinct ellipse that is tangent at the
midpoint. But that implies that we have two distinct ellipses sharing the same foci, and
tangent at distinct points of one line. Here I join Bocher in saying that this is obviously
impossible.

The complete presentation of the foregoing outline will center on proving two lem-
mas, one for Marden’s part of the proof, and one for Bocher’s. In addition, we need
one lemma about ellipses, and other preliminary observations. We turn to those next.

PRELIMINARIES. One important point to note is this: with no loss of generality,
we may translate, rotate, and scale our triangle in any convenient manner. Furthermore,
observe that these transformations can be imposed by a linear function M : C — C.
Let M(z) = az + B, where a # 0 and B are fixed complex numbers, and express «
in polar form re’?. Then transforming z to M(z) has the following geometric inter-
pretation: scale z by r, rotate about the origin through angle 8, and translate by S.
Thus any combination of scaling, rotating, and translating can be realized through the
application of a linear function M.

We can now justify the claim that imposing these transformations represents
no loss of generality in our proofs. That requires showing that Marden’s theo-
rem holds for a triple {z, 2, z3} if and only if it also holds for the transformed
triple {M (z,), M (z2), M(z3)}. Actually, the invertibility of linear functions implies
that we need only show one direction of the double implication. So, if we know
that Marden’s Theorem holds for {zi, z», z3}, let us see that it must also hold for
{M(z1), M(22), M(z3)}.

In Figure 1, the triangle with vertices at the z; is shown, with the inscribed ellipse
tangent at the midpoints of the sides. The foci of the ellipse, which must be the roots of
p’, are also shown. Looking at M geometrically, we observe that scaling, rotating, and
translating this figure preserve all of the ingredients. That is, the image of the triangle
is a similar triangle, the image of the ellipse is still an inscribed ellipse tangent at the
midpoints of the sides, and the images of the foci of the original ellipse are the foci of
the transformed ellipse. For the transformed configuration, the new polynomial will be
pu(2) = (2 — M(z21))(z — M(22))(z — M(z3)). The derivative is given by p),(z). Our
goal is to show that M carries the roots of p’ to roots of pj,.

Figure 1. Geometric configuration for Marden’s Theorem.

To that end, let us substitute M (z) for z in the definition of p,,. That gives us
pPu(M(2)) = (M(z) — M(21))(M(z) — M(22))(M(z) — M(z3)). (1
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Next, notice that M (z) — M(z;) = a(z — z;). Therefore, equation (1) simplifies to

pu(M(2)) = o’ p(2).

Now differentiate both sides of this equation, bearing in mind that M'(z) = «. We
obtain

apl(M(2) = o’ p'(2)
and hence
Pu(M(2) = o’ p'(2).

This shows that if z is a root of p’, then M (z) is a root of p),. That is what we wished
to show.

It is often helpful to recognize that the transformation M is invertible, allowing
us to both do and undo the geometric transformations of translation, rotation, and
dilation. For example, it was observed earlier that the special case of a double root of
p’ corresponds to an inscribed circle and an equilateral triangle. Since an invertible
transformation is one-to-one, the preceding result now implies that p’ has a repeated
root if and only if p}, does.

A second preliminary notion relates the coefficients and roots of a quadratic poly-
nomial. As is well known, if the quadratic z> 4+ bz + ¢ has roots z; and z,, then the
coefficients are given by b = —(z; + 22) and ¢ = z;2,. This will be needed in the
proofs to follow.

The remaining preliminary topic concerns ellipses. Let us recall the familiar optical
property of ellipses. Geometrically, this says that at any point of an ellipse, the tan-
gent line makes equal acute angles with the lines to the two foci. We will need a less
familiar, though equivalent, variant of this fact, which is stated in the following lemma.

Lemma 1. Consider an ellipse with foci F and F,, and a point A outside the ellipse.
There are two lines through A that are tangent to the ellipse. Let G| and G, be the
points of tangency of these lines with the ellipse. Then / F\AG, = /F,AG,.

G,

Figure 2. Ellipse, external point, and two lines.

Proof. The configuration described in the lemma is depicted in Figure 2, with one of
two possible assignments of the labels G, and G,. Observe that if the conclusion of
the lemma holds for the labeling shown in the figure, it will also hold for the alternative
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labeling, and conversely. Therefore, there is no loss in generality to assign the labels
as illustrated.

Reflect F; through AG, to define Hi, and let K| be the intersection of AG; with
FyH, (Figure 3). Then AAK F; and AAK H, are congruent right triangles, so AF; =
AH, and /F|AK, = ZHAK,. The analogous construction may be performed at
G, leading to the analogous congruences. Now our object is to see that LZF1AG, =
/ F>AG,. Using the congruences just noted, it suffices to show /F{AH, = /F,AH,.

Figure 3. Isosceles triangles with apex at A.

Next draw the lines FyG; and F,G,, extending the latter to H;, (Figure 4).
The collinearity of F,, G, and H; is a consequence of the optical property of
ellipses mentioned above. It shows /F, G K, = ZF,G;A. We also observe that
/F\G\K, = ZH,G K, since AK, is the perpendicular bisector of F;H;. Thus
ZF,G\A = ZH,G K, showing that F,, G|, and H, are collinear. As before, an
analogous construction occurs at G.

Figure 4. Using the optical property.

Now we will show that AAH, F; is congruent to AA F) H,, by showing that their
corresponding sides are equal. We have already observed AH, = AF; and AF, =
A H,. For the remaining two sides, we have H, F;, = F1G, + G F, = F1G, + G, F, =
F| H,, where we have used the fact that the sum of the distances from the foci to any
point of the ellipse is constant.

Finally, the congruence of AAH, F, and AA F| H, implies that /H\AF, = ZF|AH,.
Since these angles have / F; A F; in common, we conclude that /ZH|AF, = ZF,AH,.
As we observed earlier, this suffices to show that /G{AF; = F,AG», as desired. H
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Lemma 1 comes down to us from ancient Greek geometry. According to Milne
and Davis [7], it appears as Proposition 46 in Book III of the Conics of Apollonius.
Although it appears to be an extension of the optical property of ellipses, the two are
actually equivalent. As shown above, the result for A outside the ellipse follows from
the optical property. But if we assume the conclusion of the lemma, we can obtain the
optical property as the limiting case with A approaching the ellipse.

Although this fact about ellipses is not part of the standard undergraduate curricu-
lum, perhaps it should be. Its proof uses well known geometrical techniques, and it
nicely extends the optical property that is usually at least mentioned in a unit on el-
lipses. It is also particularly interesting in the context of an ellipse inscribed in a tri-
angle, where the role of A is played by any vertex, and the tangent lines are sides
of the triangle. In this case, the lemma shows that the foci of the ellipse are isogo-
nal conjugates (see [9]). As will become obvious in the sequel, the lemma is also an
indispensible tool in our proof of Marden’s Theorem.

THE MAIN EVENT. At last we are ready to prove Marden’s Theorem. Following
the outline discussed earlier, we will consider two lemmas, one based on the proof of
Marden, and the other on the proof of Bocher. We begin with Marden’s contribution.

Lemma 2. Let the polynomial p(z), it’s roots 7, z2, 23, and the triangle T be as in
the statement of Marden’s Theorem. Then the ellipse with foci at the roots of p’ and
passing through the midpoint of one side of the triangle T is actually tangent to that
side of T.

Proof. As noted in the preceding section, with no loss of generality, we can rotate,
translate, and scale the triangle in any way we choose. Accordingly, let us arrange
things so that one side of the triangle lies along the x-axis centered at the origin, and
has length 2, while the opposite vertex sits in the upper half-plane. Thus, the vertices
of the triangle (and the roots of p) are at 1, —1, and w = a + bi where b > 0. We will
look at the ellipse passing through zero, which is the midpoint of the side that lies on
the x-axis. In order to show that the ellipse is tangent to this side, we will show that
the lines from the origin to each focus make equal angles with the x-axis.
Now we know the roots of p (which we may assume to be monic), so we have

PR =G-De+Dez-—w) =2 —w® —z+w.
Differentiating, we find

2 1
P/(Z)=3Z2—2wz—1:3(22_%2_§>'

Thus, if the roots of p’ are z4 = r4e'™ and z5 = rse'® (with 0 < 6,, 65 < 27), we
conclude that z4 4+ zs = 2w/3 and z4z5s = —%. The first of these shows that at least
one of the roots of p’ must be in the upper half-plane, and the second then shows that
04 + 05 = . This in turn also tells us that both roots must be in the upper half-plane.
Moreover, considering these roots as vectors drawn from the origin, the angles the
vectors make with the positive x-axis are supplementary. Thus, either both roots are
on the y-axis, or one root makes an acute angle with the positive x-axis and the other
roots makes an equal angle with the negative x-axis. In either case, this shows that
the lines from the foci of our ellipse to 0 make equal angles with the x-axis, which is
therefore a tangent line of the ellipse. ]
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On to Bocher’s contribution.

Lemma 3. Let the polynomial p(z), it’s roots zy, z2, 23, and the triangle T be as in
the statement of Marden’s Theorem. Consider the ellipse with foci at the roots of p’
and which is tangent to one side of T at its midpoint. Then this same ellipse is tangent
to the other two sides of T

Proof. As before, we are free to position the triangle any way we wish. The ellipse
E is tangent to one side of the triangle, and we again place this side along the x-axis.
However, this time we put one vertex at the origin, and the other at 1. The remaining
vertex will again be placed at w = a + bi where b > 0. This configuration will permit
us to see that the ellipse is tangent to side Ow.

With roots at 0, 1, and w, p(z) can be taken as z(z — 1)(z — w). Multiplying out
these factors gives

p() =2 — (1 +wz+wz
and differentiation leads to
P(z) =327 = 2(1 + w)z + w.

By a similar argument as before, observe that z4, + z5 = (2/3)(1 + w). This shows
that at least one of the roots of p’ must be in the upper half-plane. But here we also
know that these roots are the foci of an ellipse tangent to the x-axis. Therefore, both
are in the upper half plane, allowing us to express the roots of p’ as z4 = r4e'® and
75 = r5¢'% where 0 < 0, < 05 < 7.

Turning next to the constant term of p’, we have z4z5 = w/3. This shows that 6, +
05 is equal to the angle between the positive x-axis and Ow. Consequently, the angle
between Ozs and Ow equals 6,. See Figure 5.

Figure 5. Configuration for Bocher’s result.

Now we apply Lemma 1, with the origin in the role of the external point A (Fig-
ure 6). How do we know the origin is external? This is apparent since E is tangent to
the x-axis at x = 1/2. Indeed, the x-axis is one of the two tangent lines to E from the
origin; let the other tangent line be L. Then by Lemma 1, the angle B between Ozs
and L equals the angle between the x-axis and Oz, which in turn equals 6,. But that
is the same as the angle between Ozs and Ow. This shows that L is coincident with
Ow, and thus, Ow is tangent to E.
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Figure 6. The ellipse is tangent to Ow because f = 6y.

It remains to show that the side from 1 to w is also tangent to the ellipse. This can
be established by essentially the same proof, but with the triangle translated horizon-
tally so that it has vertices at —1 and 0, rather than at 0 and 1. Carrying out this plan
completes the proof of the lemma. ]

And now, finally, we arrive at the proof of Marden’s Theorem.

Proof of Marden’s Theorem. As usual, we assume that polynomial p, its roots z;, and
triangle T are as in the statement of the theorem. Using the roots of p’ as foci, draw an
ellipse E that passes through the midpoint of one side of the triangle. By Lemma 2, E
is actually tangent to that side of 7. By Lemma 3, E is also tangent to the other two
sides of 7. Now we claim that the points of tangency with these other two sides must
be the midpoints. If not, repeat the construction above with a new side, producing an
ellipse E’. Since E and E’ have the same foci, and are both tangent to the same line
(in fact to three lines), they must actually coincide. But this would show that E and E’
both contact the new side in the same point, namely, the midpoint. By symmetry, the
same conclusion holds for the remaining side of the triangle. Thus, the original ellipse
E is tangent to all three sides at their midpoints. That completes the proof of Marden’s
Theorem. ]
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A Lemma on Divisibility

Proofs of the unique factorisation theorem for integers tend to follow one of two
routes. One method is to show from the Euclidean algorithm that

for all primes p, p | ab implies either p | a or p | b,

from which the theorem follows quickly. The other method uses an ingenious
induction over the integers. Both methods can be found, for instance, in the books
of Davenport (The Higher Arithmetic: An Introduction to the Theory of Numbers)
and Hardy and Wright (An Introduction to the Theory of Numbers), and in very
many other places. Thus it is interesting to give an independent direct proof of
the statement displayed above, using an induction over the primes.

We say that the prime p has property P if for all integers a and b, p | ab
implies either p | @ or p | b. Clearly 2 has property P, since if ab is even then
one of a and b must be even. This sets up the induction. Now supppose that for
some prime p, all primes strictly less than p have property P, and suppose that
p | ab. We can write a = mp + ¢ and b = mp + d, where 0 < ¢,d < p and
p | cd. If either ¢ = 0 or d = 0, then p divides a or b as required. If not, then
both ¢ and d are at least 1 and so can be factored into primes strictly less than p,
say ¢ =[] p®, d =[] p* (existence of factorisation has of course been proved
earlier). Now since p | cd there is some n such that np = [] p}* i where all Di
are less than p and so have property P. But since p is also prime, it cannot be
divisible by p;, and so each p; must divide n. Thus we may cancel all the primes
p; successively, ending up with some integer n’ for which »n’p = 1, which is
clearly impossible.
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