The Most Marvelous Theorem in Mathematics

Dan Kalman American University www.dankalman.net

Outline

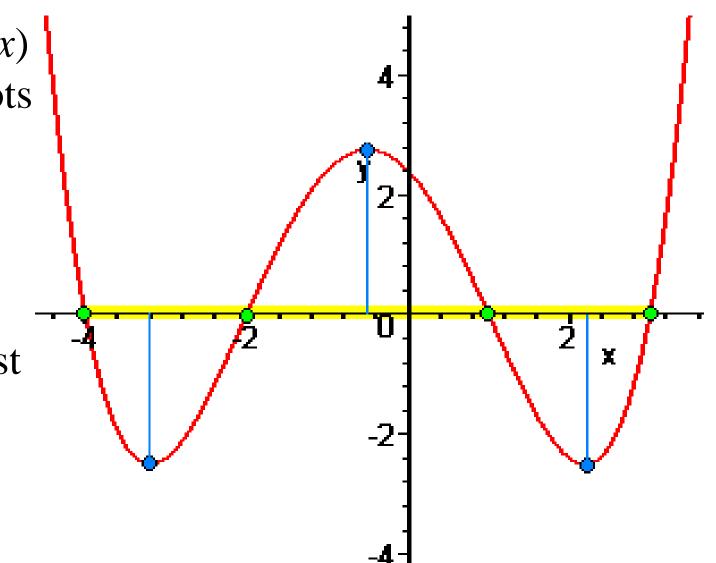
- Overview of the theorem
- Ellipses
- Background Facts
- Proof

Real Polynomials

- Familiar functions: $4x^5 3x^4 + x^3 5x^2 7x + 3$
- Whole number exponents
- Real coefficients
- No squareroots, *x*'s in denominator, *named* functions

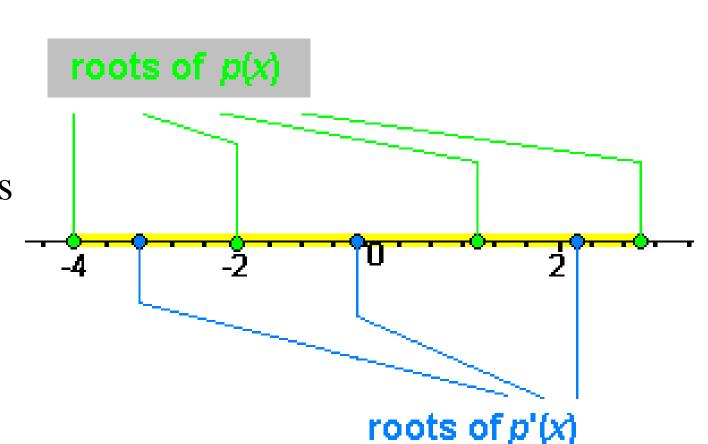
Real Polynomials with all Real Roots

- Roots of p'(x)interlace roots of p(x)
- All roots of p'(x) in the interval
 between least and greatest roots of p(x)

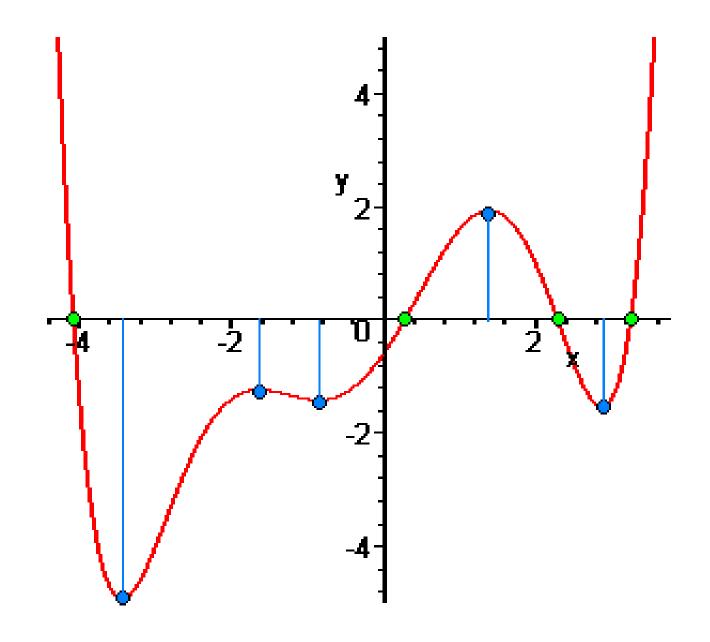


One Dimensional View

- Just view
 domain of
 p(x)
- Identify special points with labels

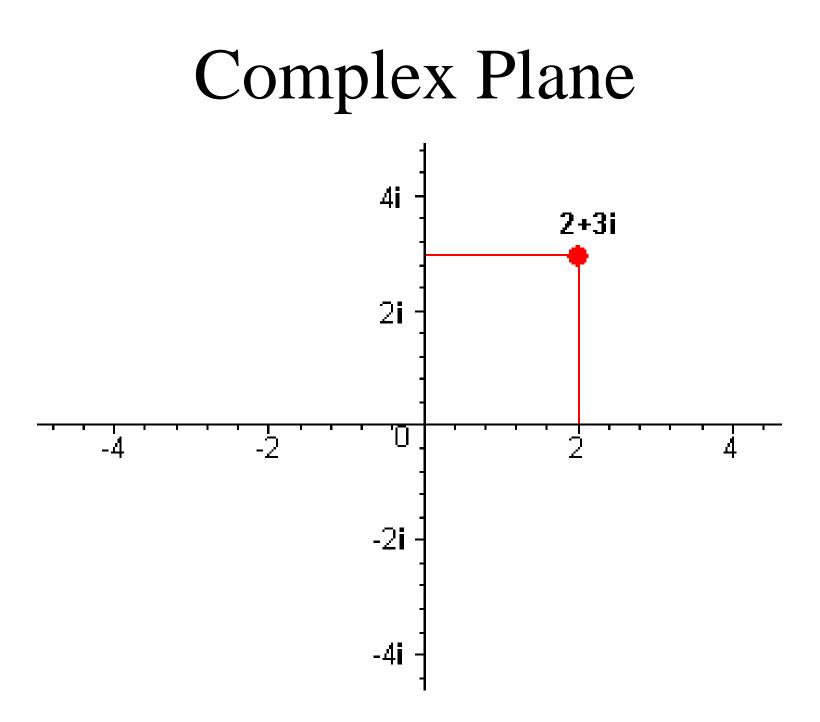


Complex roots ...?



Complex Numbers

- i = square root of -1
- $i^2 = -1$
- General complex form x + iy
- Example 2+5i
- Add, subtract, multiply, and divide like regular numbers
- Picture as points in a plane (as opposed to a line)



Complex Polynomials

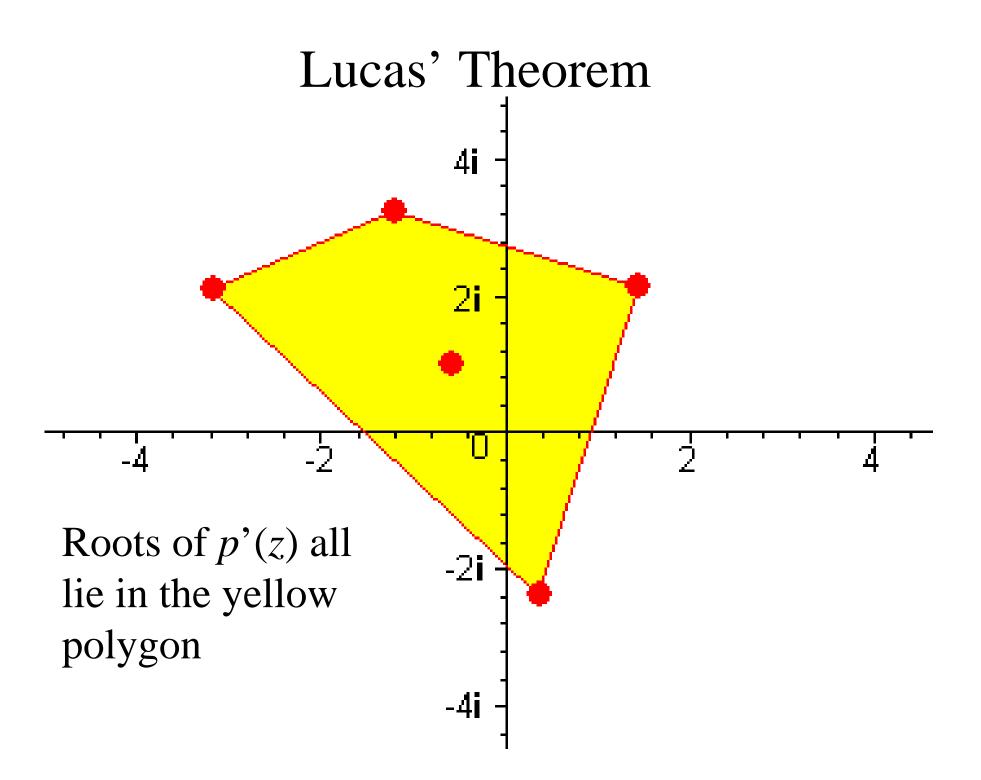
- Similar familiar functions $4z^5 5z^2 7z + 3$
- Variable can be replaced with real or complex values
- Coefficients can be real or complex
- The domain is graphed as a plane the complex plane

Complex Poly Facts

• Every complex polynomial factors to something of the form

 $\alpha(z-z_1)(z-z_2)(z-z_3)\cdots(z-z_n)$

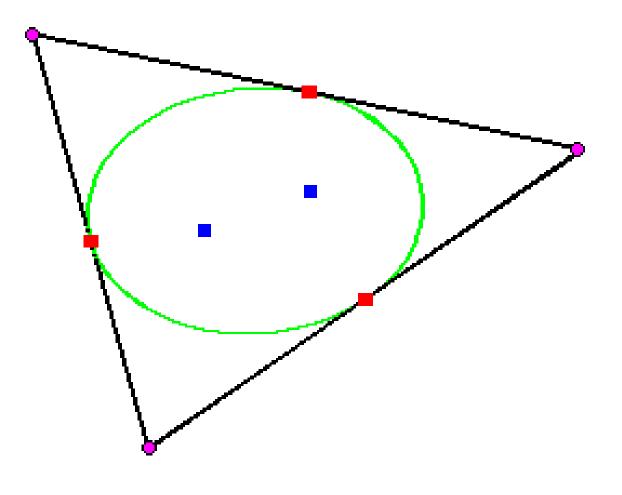
- For degree (highest exponent) n, you get n roots (z₁, z₂, etc.)
- Double count repeated roots as necessary
- Lucas's Theorem: the roots of p'(z) all lie in the convex hull of the roots of p(z).



Marden's Theorem

- Special case: cubic polynomial p(z)
- Roots are 3 noncolinear points in complex plane
- Convex hull is a triangle
- Where (exactly) are the roots of p'(z)?
- At the foci of an ellipse inscribed in the triangle

- Show roots of p(z)
- Show triangle
- Bisect sides
- Inscribe ellipse
- Mark foci
- Those are the roots of p'(z)
- INCREDIBLE



Outline

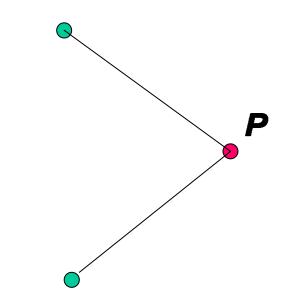
- Overview of the theorem
- Ellipses
- Background Facts
- Proof

Ellipse Definition

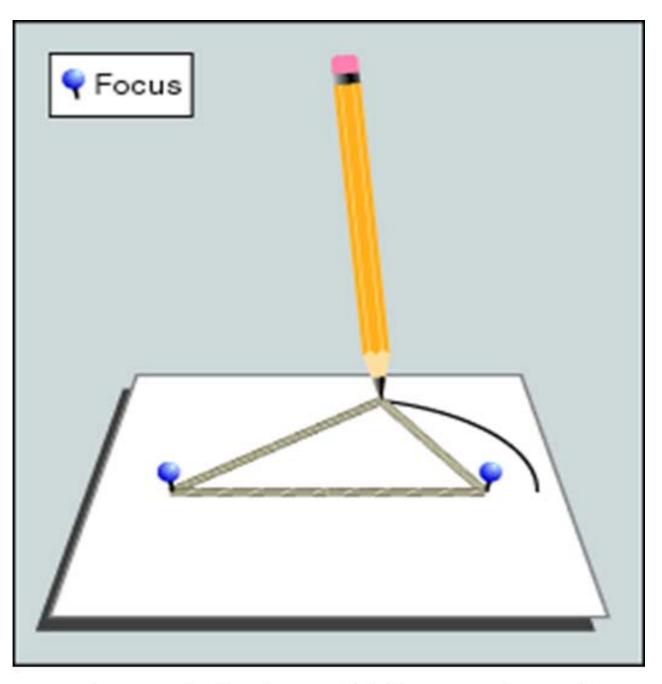
- Let two points be given *E* and *F*
- These are called *foci* of the ellipse

(1 focus, 2 or more foci)(faux sigh)

- Let a fixed distance *d* be given
- *P* is a point of the ellipse if and only if traveling from *E* to *P* and then to *F* has combined distance *d*.

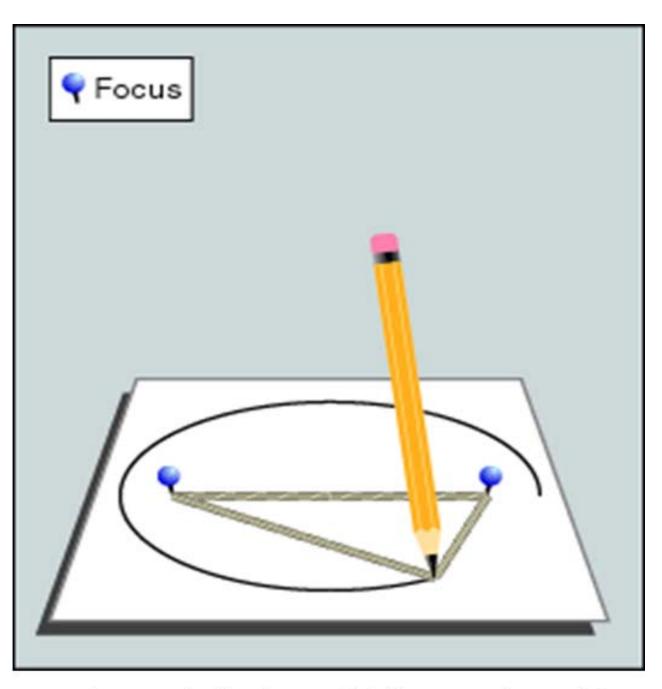


Pencil, Pins, String



http://ccins.camosun.bc.ca/~jbritton/ellipseanim.gif

Pencil, Pins, String



http://ccins.camosun.bc.ca/~jbritton/ellipseanim.gif

An Ellipse Fact

- Let points *E* and *F* be given.
- Let point *P* be given.
- There is a unique ellipse with foci *E* and *F* going through point *P*
- Just find the distance from *E* to *P* and then to *F*. That becomes the fixed distance defining the ellipse

Animating Marden's Theorem

- Interesting fact: the roots of p(z) and p'(z) have the same average
- For cubic, roots of *p*(*z*) are vertices of a triangle; average is the centroid
- This has to be halfway between the two roots of *p*'
- If you know where one root of *p*' is, then you know where the other is

Animating (cont.)

- Draw the triangle.
- Guess where one root of *p*' is
- That determines where the other root would have to be
- Use these as foci
- Make an ellipse with these foci going through midpoint of one side
- Repeat for other two sides
- Hope that all three ellipses coincide, and are tangent to the sides at the midpoints

- Click one point possible root
- Reflect through centroid to define other root
- Draw ellipse with these foci and passing through the midpoint of one side
- Repeat for other two sides
- Drag the clicked point around until all three ellipses coincide
- The ellipses become tangent to sides at midpoints
- The foci are roots of p'

Outline

- Overview of the theorem
- Ellipses
- Background Facts
- Proof

Four Background Facts

- One polynomial fact
- One Complex Number Fact
- Two Ellipse Facts

A polynomial fact

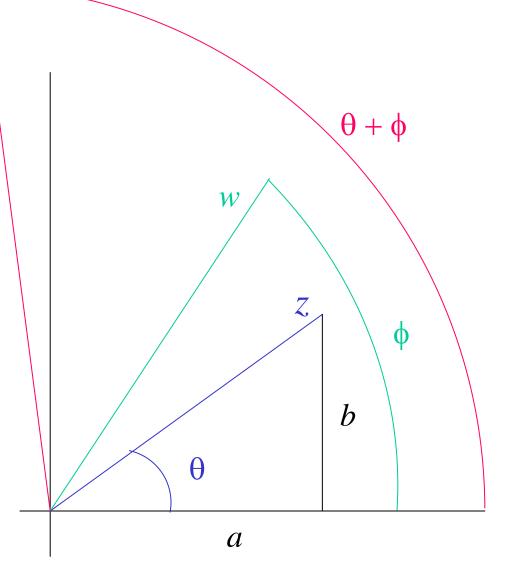
- Quadratic Polynomial $Az^2 + Bz + C$
- Roots *r* and *s*
- Fact: rs = C/A
- Proof: Factor polynomial

 $Az^{2} + Bz + C = A(z^{2} + B/A z + C/A)$ = A(z - r)(z - s) $= A(z^{2} - (r + s) z + rs)$

A Complex Number Fact

ZW

- Each complex number
 z = a+bi appears at a
 point (a,b) in the plane
- The line from origin to
 z makes an angle θ
 with the positive *x* axis
- *Fact*: If *z* has angle θ, and *w* has angle φ, then *zw* has angle θ + φ

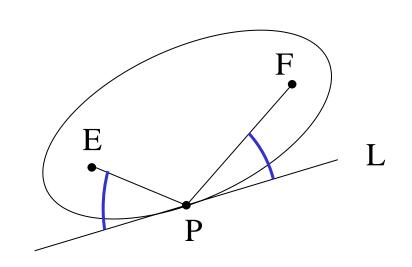


Proof of Complex Fact

- z = a + bi, $\tan \theta = b/a$
- w = c + di, $\tan \phi = d/c$
- zw = (ac-bd) + (ad+bc)i
- $\tan (\theta + \phi) = (\tan \theta + \tan \phi)/[1 \tan \theta \tan \phi]$ = (b/a + d/c)/(1 - bd/ac)= (bc + ad)/(ac-bd)

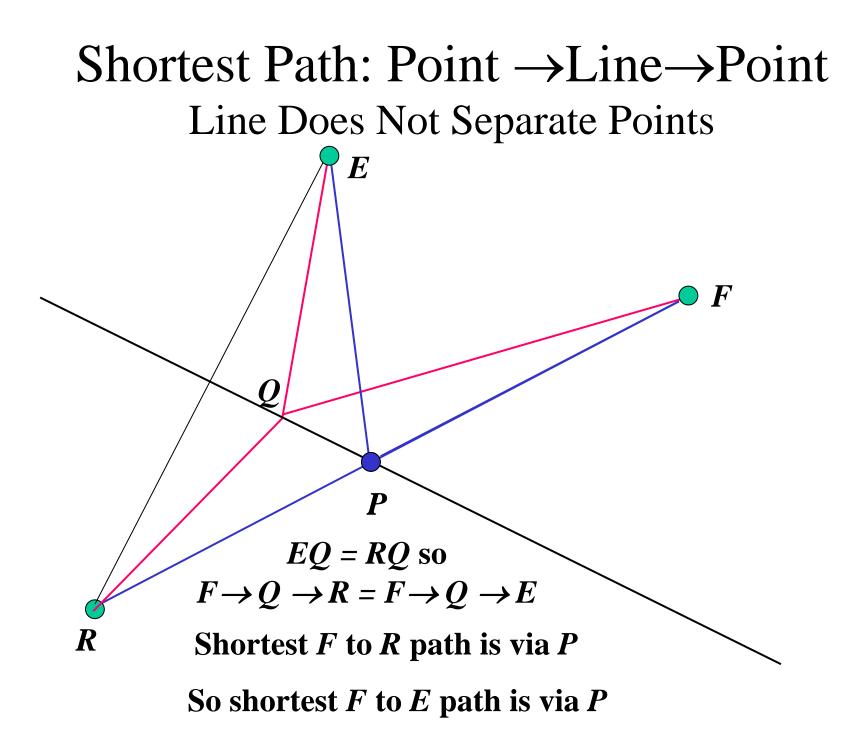
Ellipse Fact 1

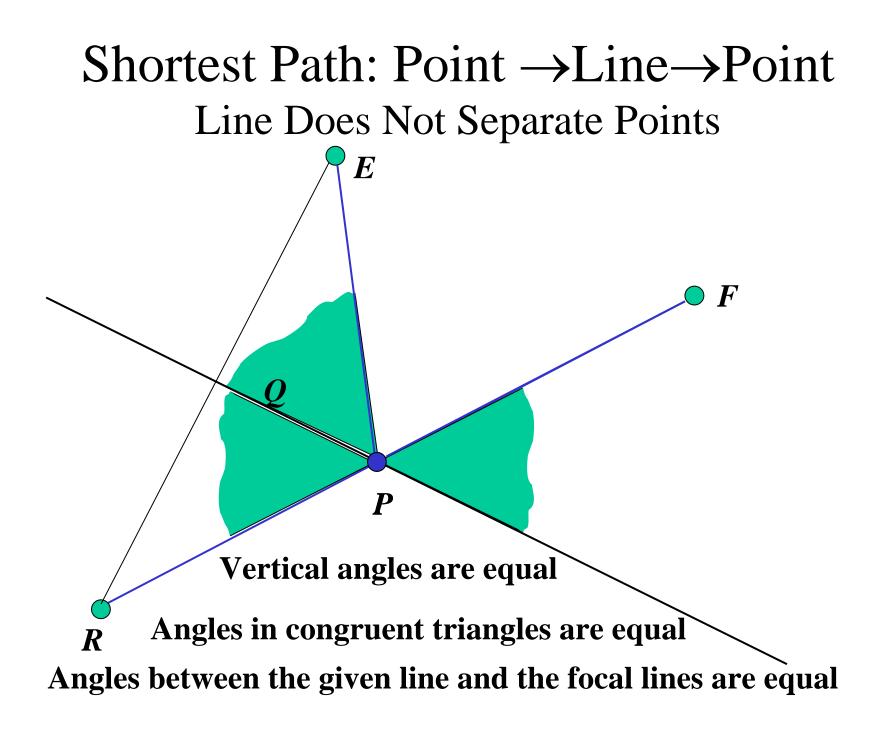
- Line L is tangent at point P to an ellipse with foci E and F
- *Fact*: Lines EP and FP make equal angles with line L
- If and only if: equal angles implies tangency

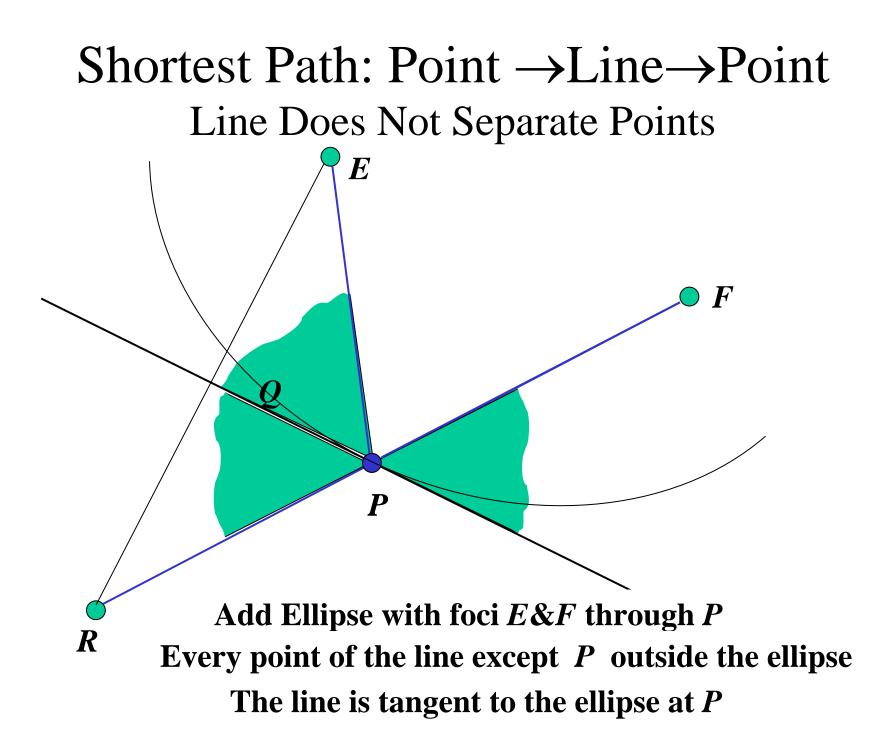


The distance E-P-F is smaller than for any other point on line L. No other ellipse with the same foci can be tangent to L.

Shortest Path: Point \rightarrow Line \rightarrow Point Line Separates Points Two line path via any other point *Q* is longer Q These angles are equal. P Shortest path is straight line via point **P**.

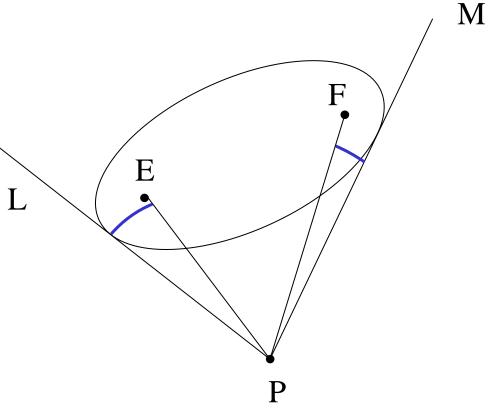


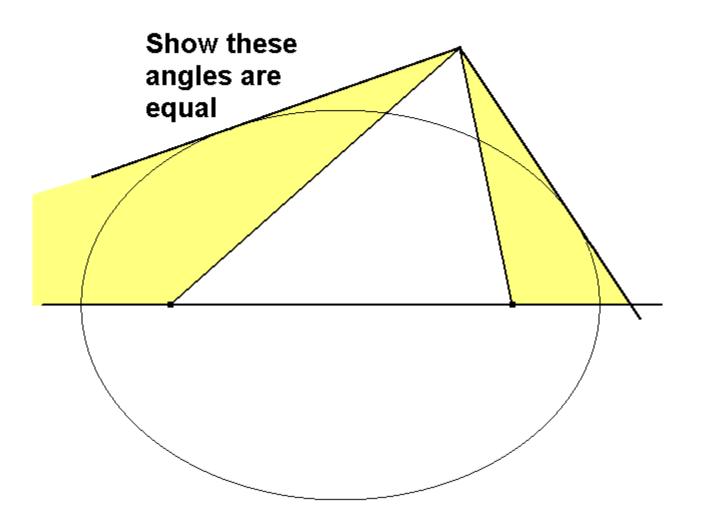


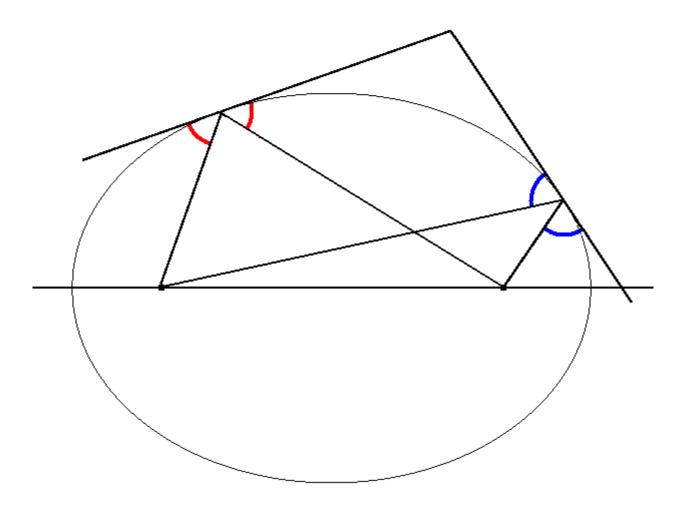


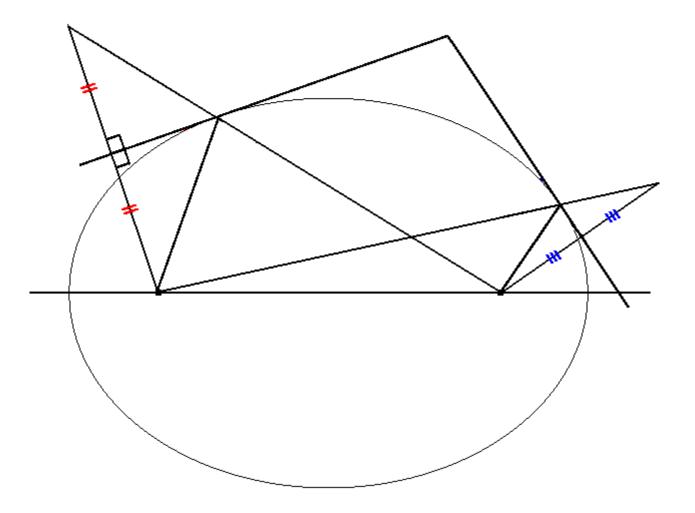
Ellipse Fact 2

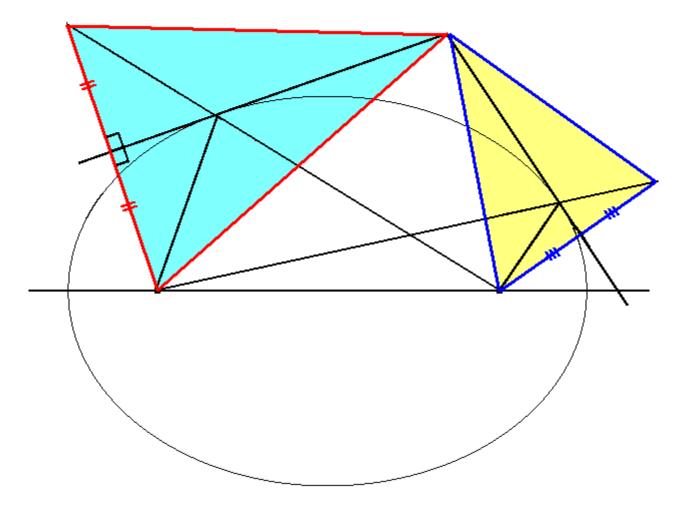
- Lines L and M from point P are both tangent to an ellipse with foci E and F
- *Fact*: Lines EP and FP make equal angles with lines L and M
- If and only if: Given one tangent line equal angles implies tangency of other line

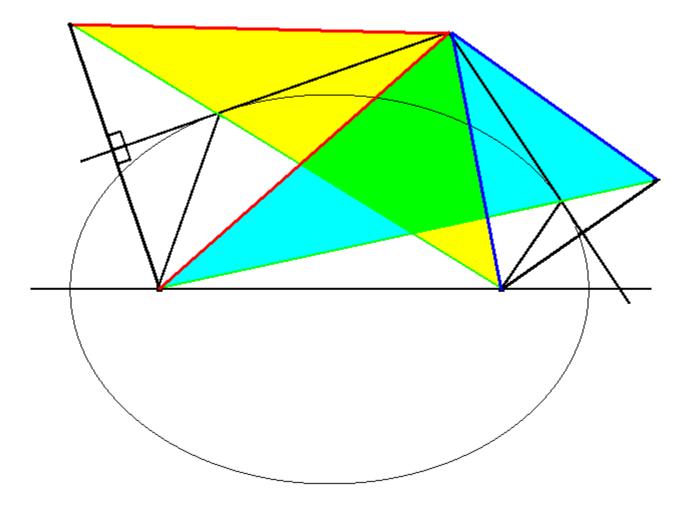


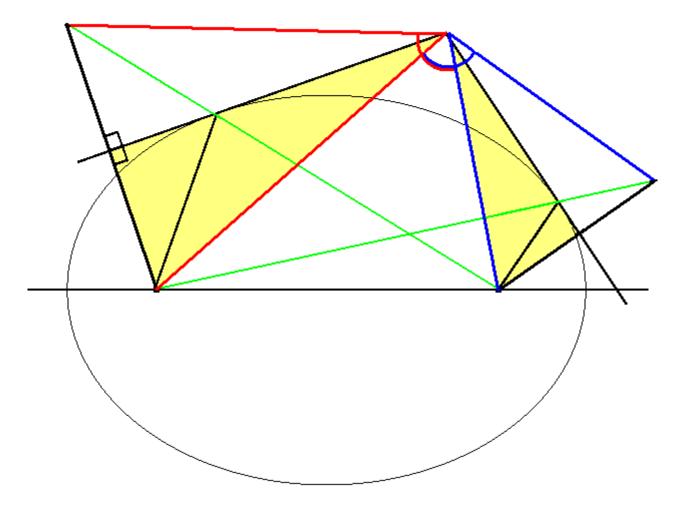












Outline

- Overview of the theorem
- Ellipses
- Background Facts
- Proof

Proof Overview

- Notation: p(z) has roots z_1 , z_2 , z_3 p'(z) has roots z_4 , z_5 ;
- Moving triangles around
- An ellipse with foci z_4 , z_5 and going through the midpoint of a side of the triangle, is actually tangent there
- The ellipses defined separately for the three sides of the triangle are actually all the same ellipse

Moving Triangles Around

- We can rotate and translate a triangle without changing the geometry of the inscribed ellipse
- Rotation and translation is imposed by a linear function

 $z \rightarrow \alpha z + \beta$ α, β complex constants, $|\alpha| = 1$

- Carry three vertices of a triangle to new locations
- Each triangle defines a cubic polynomial
- Same function carries the roots of the derivative for the original triangle to roots of the derivative for the new triangle
- We can put the triangle in any location and with any orientation before proving the theorem

Ellipse Through One Midpoint

• Position triangle so that its base is on the *x* axis, with midpoint at the origin, and with the rest of the triangle in the upper half plane

•
$$z_1 = -a$$
, $z_2 = a$, with *a* real.

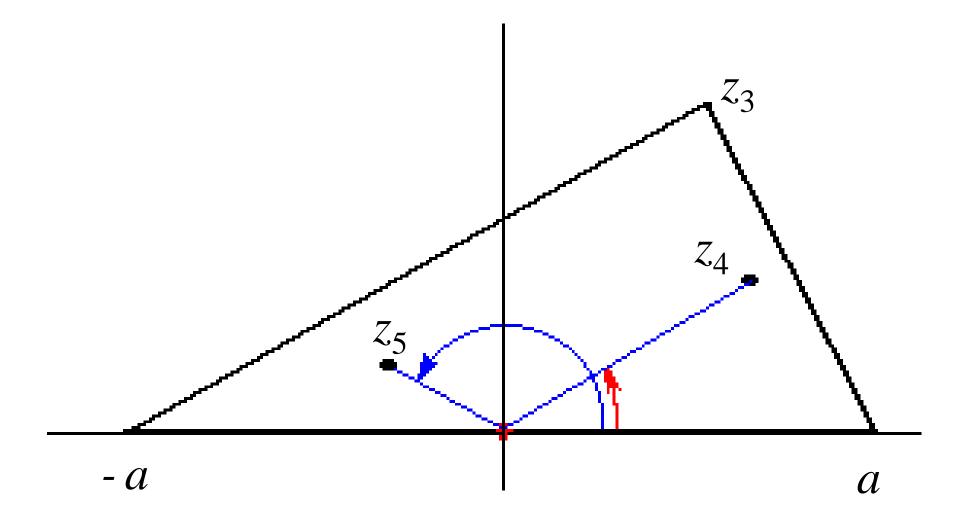
•
$$p(z) = (z+a)(z-a)(z-z_3) = (z^2-a^2)(z-z_3)$$

= $z^3 - z_3 z^2 - a^2 z + a^2 z_3$

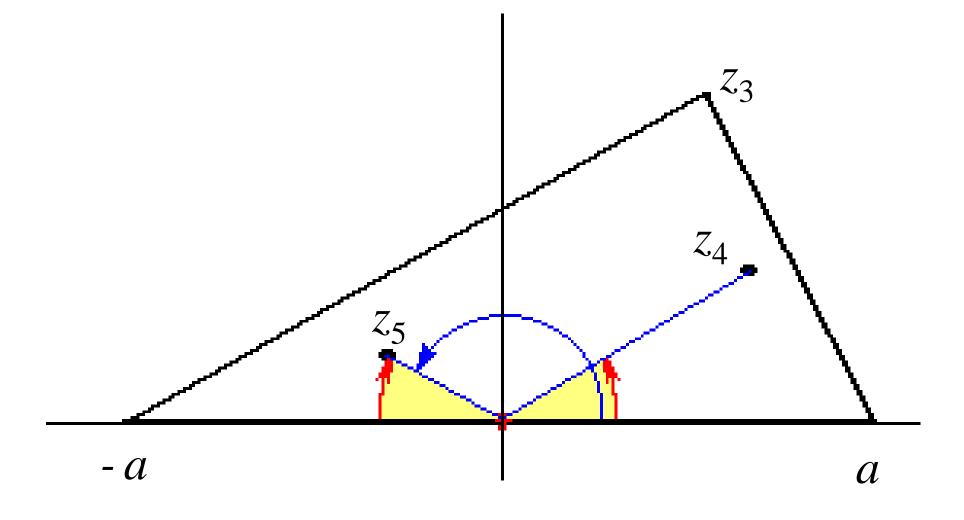
•
$$p'(z) = 3z^2 - 2z_3 z - a^2$$

- Roots of this quadratic are z_4 and z_5
- $z_4 z_5 = -a^2/3$ is negative real, angle 180°
- The angles for z_4 and z_5 add up to 180°

Angles add to 180°



RED Angles are EQUAL



Ellipse is Tangent to x Axis

Conclusion: an ellipse with foci at the roots of p'(z), and which passes z_3 through the midpoint of one side, is tangent to that side. Z_A Z_{5}

a

- *A*

Final Step

- Use the roots of p'(z) as foci
- Make three ellipses; one for the midpoint of each side of the triangle
- We know that each ellipse is actually tangent to the corresponding side at the midpoint
- Now we show that the three ellipses are all the same
- Needed result: The ellipse with foci at the roots of p'(z) and tangent to one side at its midpoint is also tangent to the other two sides

Final Step (continued)

- Needed result: The ellipse tangent to one side at its midpoint is also tangent to the other two sides
- Enough to show it is tangent to one other side
- Recall, with given foci, there can be only one ellipse tangent to a given side
- Let E_1 and E_2 be the ellipses tangent at the midpoints of the sides 1 and 2, respectively
- Suppose E_1 is also tangent to side 2
- Then E_1 and E_2 have the same foci, and are both tangent to the same side, so are identical

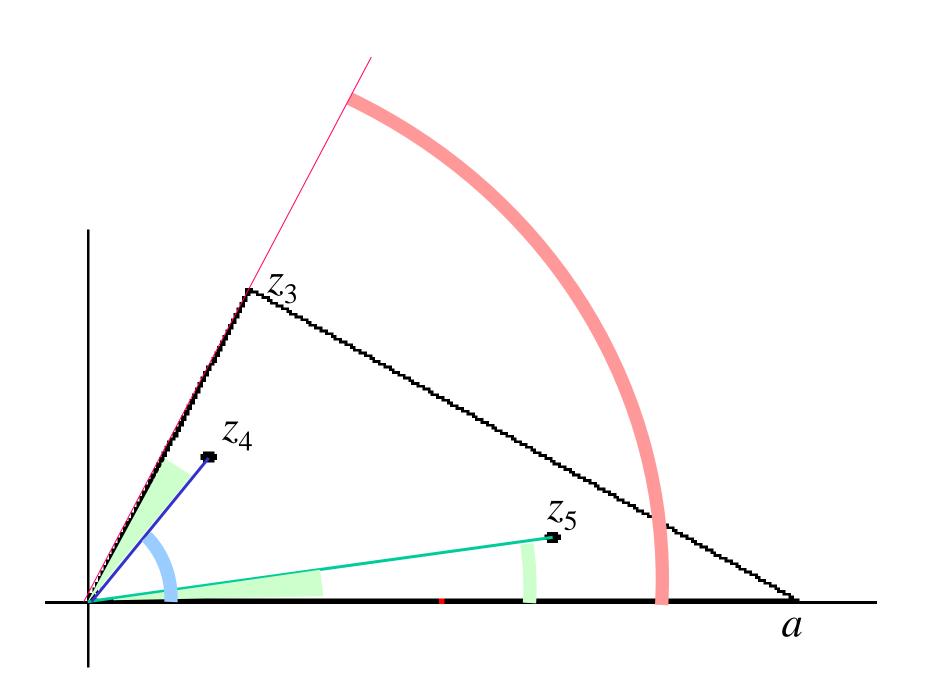
Final Step (continued)

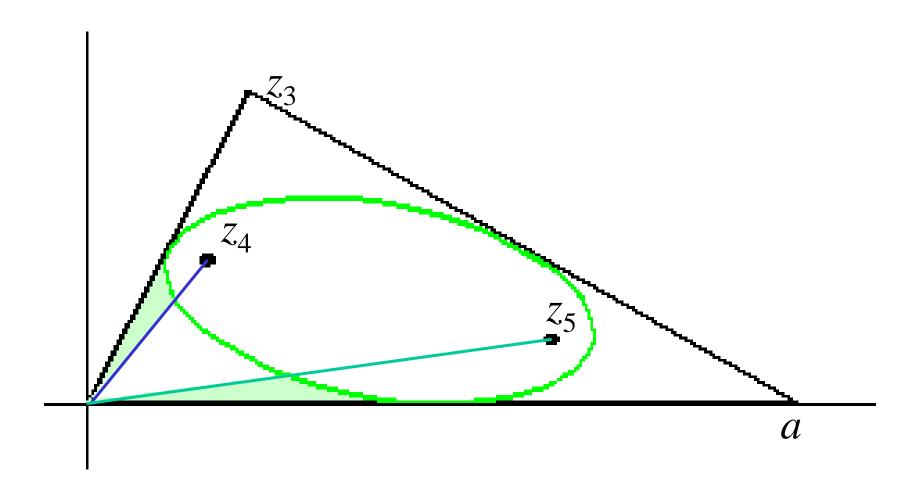
Position the triangle with one vertex at the origin,
 2nd vertex at *a* > 0 on the *x* axis, and 3rd vertex at
 *z*₃ in upper half plane

•
$$p(z) = z(z - a) (z - z_3) = z^3 - (a + z_3) z^2 + az_3 z$$

•
$$p'(z) = 3z^2 - 2(a + z_3) z + az_3$$

- Roots of this quadratic are z_4 and z_5
- $z_4 z_5 = (a/3)z_3$ on same line as z_3
- Conclusion: angle for z_4 plus angle for z_5 = angle for z_3





QED

- That completes the proof
- Thanks and Finis