
VOL. 75, NO. 3, JUNE 2002 187

Doubly Recursive Multivariate
Automatic Differentiation

DAN KALMAN
American University

Washington, D.C. 20016
kalman@american.edu

Automatic differentiation is a way to find the derivative of an expression without find-
ing an expression for the derivative. More specifically, in a computing environment
with automatic differentiation, you can obtain a numerical value for f ′(x) by enter-
ing an expression for f (x). The resulting computation is accurate to the precision
of the computer system—it does not depend on the approximation of derivatives by
difference quotients. Indeed, the computation is equivalent to evaluating a symbolic
expression for f ′(x), but no one has to find that expression—not even the computer
system.

That’s right. The automatic differentiation system never formulates a symbolic ex-
pression for the derivative. Automatically calling on something like Mathematica to
produce a symbolic derivative, and then plugging in a value for x is the wrong image
entirely. Automatic differentiation is something completely different.

Well OK, but so what? Symbolic algebra systems are so prevalent and powerful
today, why should we be concerned with avoiding symbolic methods? There are two
answers. The first is practical. Symbolic generation of derivatives can lead to expo-
nential growth in the length of expressions. That causes computational problems in
real applications. Accordingly, there is a practical applied side to the subject of auto-
matic differentiation, as witnessed by the serious attention of computer scientists and
numerical analysts [3, 4].

The second answer is more mathematical. It is a relatively easy task to create a sin-
gle variable automatic differentiation system capable of evaluating first derivatives. In
fact, writing in this MAGAZINE in 1986, Rall [10] gives a beautiful presentation of just
such a system. What is mathematically interesting is an amazingly elegant extension
of the one-variable/one-derivative system that handles essentially any number of vari-
ables and derivatives. The extension is recursively defined, employing an induction on
both the number of variables and the number of derivatives, and using fundamental
definitions that are virtually identical to the ones used in Rall’s system.

The purpose of this paper is to present the recursive automatic differentiation sys-
tem. To set the stage, we will begin with a brief review of Rall’s one-variable/one-
derivative system, followed by an example of the recursive system in action. Then the
mathematical formulation of the recursive system will be presented. The paper will
end with a brief discussion of practical issues related to the recursive system.

Rall’s system

Because automatic differentiation is a computational technique, it is best understood
in the context of a computer language. In particular, recall that in a scientific computer
language such as Basic, or FORTRAN, variables correspond to memory locations. For
example, consider the statements

x = 3

f = x2 − 5.

188 MATHEMATICS MAGAZINE

The first causes a value of 3 to be stored in the memory location for x , while the
second reads the value of x , squares it, subtracts 5, and stores the result in the memory
location for f . We can think of this as a procedure for evaluating the function f (x) =
x2 − 3.

In Rall’s system, the idea is to simultaneously evaluate both f (x) and f ′(x). In this
system, each variable corresponds to an ordered pair of memory locations, one for the
value of a function, and one for the value of the derivative. Now the goal is for the
statements above to produce the pair (4, 6), incorporating the values of both f (3)

and f ′(3).
This is accomplished as follows. First, when a variable is assigned a value in a state-

ment such as x = 3 the automatic differentiation system stores in the memory for x
the pair (3, 1). This corresponds to the value of the identity function I (x) = x , and its
derivative, at x = 3. Second, any numerical constant that appears in an expression is
represented by a pair corresponding to the value and derivative of a constant function.
For the example above, the constant 5 is represented by (5, 0)—the value of the con-
stant function C(x) ≡ 5, and its derivative. Finally, each operation appearing in the
expression is carried out in an extended sense, operating on pairs. The rule for pair
addition or subtraction is just the usual componentwise operation. The rule for pair
multiplication is

(a1, a2) × (b1, b2) = (a1b1, a2b1 + a1b2). (1)

Using these definitions, we can anticipate what the automatic differentiation system
will do in response to the pair of statements

x = 3

f = x2 − 5.

The first statement leads to the creation of the pair (3,1). The second statement trans-
lates into a sequence of operations on pairs:

f = (3, 1) × (3, 1) − (5, 0)

= (3 · 3, 1 · 3 + 3 · 1) − (5, 0)

= (9, 6) − (5, 0)

= (4, 6).

As easily verified, this result correctly represents the value of both x2 − 5 and its
derivative at x = 3. Notice that there is no symbolic computation here. However, the
equivalent of symbolic differentiation rules are built into the definitions of pair addition
and multiplication. Thus, the expression for f is evaluated to produce both the value
of the expression and of its derivative.

It should be stressed that the operations on pairs can be formulated without any
reference to functions and derivatives. We adopt an abstract framework with objects
(ordered pairs) and operations. As defined above, ordered pairs can be added, sub-
tracted, and multiplied. In fact, extended operations for pairs can be defined for all the
usual elementary functions. For example, the sine of a pair is defined according to

sin(a1, a2) = (sin a1, a2 cos a1). (2)

Of course, these abstract definitions are inspired by the idea that each ordered pair will
contain values of a function and its derivative. To make the connection explicit, we will
use the notation f [1,1](x) = (f (x), f ′(x)), where the [1, 1] indicates the presence of

VOL. 75, NO. 3, JUNE 2002 189

one variable, and the inclusion of one derivative. Thus, in the original computation, we
found f [1,1](3) = (4, 6). Similarly, using the sine operation for pairs, the statements

x = 3

g = sin(x2 − 5)

result in the computation of sin(4, 6) = (sin 4, 6 cos 4). The elements of this ordered
pair are the correct values of sin(x2 − 5) and its derivative at x = 3. That is, with g(x)

defined as sin(x2 − 5), the lines above compute g[1,1](3).
What makes the system work is that each operation correctly propagates derivative

values. For the arithmetic operations, that means

f [1,1](3) + g[1,1](3) = (f + g)[1,1](3)

f [1,1](3) − g[1,1](3) = (f − g)[1,1](3) (3)

f [1,1](3) × g[1,1](3) = (f g)[1,1](3).

Observe that the rules for addition, subtraction, and products of pairs are based on the
sum and product rules for derivatives. Similarly, (2) is really nothing more than the
chain rule, since the derivative of sin(f (x)) is given by cos(f (x)) f ′(x). With a1 in
place of f (x) and a2 in place of f ′(x), this becomes cos(a1)a2. That shows that in (2),
if (a1, a2) = f [1,1](3), then sin(a1, a2) = sin(f [1,1](3)) = (sin ◦ f)[1,1](3). In a similar
way, any differentiable function φ can be extended to pairs by the formula

φ(a1, a2) = (
φ(a1), φ

′(a1)a2

)
. (4)

With this definition, we have

φ(f [1,1]) = (φ ◦ f)[1,1]. (5)

Although these examples pertain to a function of a single variable, and involve
only a single derivative, it is easy to envision extensions involving several variables
and partial derivatives of various orders. Throughout, we will restrict our attention to
functions sufficiently smooth so that order of differentiation does not matter.

In the recursive system that we will present below, the idea is to compute all of the
partial derivatives up to some specified order. In this system, evaluating a function f
at a point in its domain means determining an object f [n,m] that contains the function
value as well as the values of all partial derivatives through order m with respect to
n variables. These objects are referred to as derivative structures. Since m defines
the maximum number of derivatives, it is called the derivative index. Similarly, n is
the variable index. As in the discussion above, we can proceed abstractly by defining
derivative structures and appropriate operations without any mention of functions and
derivatives. However, given a function f , we do need some way to construct f [n,m] as
one of our abstract derivative structures, and equations analogous to (3) and (5) must
hold.

The recursive system in action

Before describing the abstract system, let’s take a look at how the system operates.
Consider the function

f (x, y, z) =
√

x + y√
z − y

,

190 MATHEMATICS MAGAZINE

and suppose we wish to evaluate f and all partial derivatives through second order at
the point (4, 5, 14). The recursive automatic differentiation system can be given this
problem with the following commands (with slightly modified syntax for readability):

x = DS-Make-Var(3,2,1,4)
y = DS-Make-Var(3,2,2,5)
z = DS-Make-Var(3,2,3,14)
u = DS-Sqrt(DS-Add(x,y))
v = DS-Sqrt(DS-Sub(z,y))
Print DS-Divide(u,v)

These commands involve applications of several different functions within the auto-
matic differentiation system. First, there are three invocations of DS-Make-Var. This
function creates the derivative structures corresponding to the independent variables
x , y, and z. For example, x = DS-Make-Var(3,2,1,4) creates a derivative struc-
ture for 3 variables, and for partial derivatives through order 2, corresponding to vari-
able number 1 (x), and assigning that variable a value of 4. This command is the
equivalent of x = 4 in the one-variable/one-derivative system. Similarly, the next two
statements create the derivative structures corresponding to variables y and z, assign-
ing values of 5 and 14, respectively. The other commands are the derivative structure
versions of standard operations; DS-Add is addition of derivative structures, DS-Sqrt
applies the square root for derivative structures, and so on. So the fourth statement
adds the derivatives structures for x and y and takes the square root of the result. That
defines a new derivative structure, u. Similarly, the next line defines v by subtracting
y from z, and applying the derivative structure for square roots. The final command
applies derivative structure division to u and v, and prints the result.

As in Rall’s system, the computations above are completely numerical. For ex-
ample, the derivative structure for the variable x stores the value of x , 4, as well as
all the partial derivatives through second order with respect to x , y, and z. These val-
ues are, of course, trivially determined. The partial derivative with respect to x is 1,
and all the other partial derivatives are 0. But the point is that the derivative structure
called x is just some sort of array with entries of 4, 1, and many zeroes. In the same
way, y and z are arrays of numbers as well. When these are combined according to the
commands listed above, the final result is printed out as

0.01235
0.11111 0.00000
1.00000 0.05556 −0.00309

−0.01235
−0.05556 −0.00309 0.00926.

These are the values of f and its derivatives, in the following arrangement:

fyy

fy fxy

f fx fxx

fyz

fz fxz fzz.

The subscripts indicate partial differentiation: fx for ∂ f
∂x , fxy for ∂2 f

∂y∂x , and so on. The
rationale for laying out the derivatives in this way will become clear when the general
system is defined. For this example, it is enough to see how the system operates, and
to observe that all the desired partial derivatives are correctly computed.

At this point, I hope that the basic idea of the automatic differentiation system is
clear. Numerical values for a function and its derivatives are arranged in some sort of
data structure, and operations on these structures are defined according to the rules of
differentiation so that derivatives are correctly propagated. The structures for the sim-
plest functions, namely the constant functions (like c(x, y, z) ≡ 5) and variables (like

VOL. 75, NO. 3, JUNE 2002 191

I1(x, y, z) ≡ x) are easy to specify directly. By operating on these simple derivative
structures, we can formulate derivative structures for essentially arbitrary expressions
involving the variables and elementary functions.

Although these ideas are feasible in principle, I also hope the reader has some sense
of the difficulty of handling all the details in practice. At first glance, the idea of
defining appropriate structures to contain all the partial derivatives through second
order relative to three variables, and then specifying the proper operations of arith-
metic, as well as proper definitions for functions like sine and cosine, should seem
fairly intimidating, or at least unpleasantly tedious. Happily, and surprisingly, there
is a remarkably simple recursive formulation that is no more complicated than Rall’s
one-variable/one-derivative system. Indeed, considered formally, the operations within
this recursive formulation are virtually identical to the operations in Rall’s system.
With that in mind, let us turn now to the recursive development of an automatic differ-
entiation system.

The objects

The first step in constructing the recursive system is to define the objects, or deriva-
tive structures, on which we will operate. Let us consider a few motivating exam-
ples. First, for functions of a single variable, automatic calculation of m derivatives
can be provided by operating on (m + 1)-tuples. A typical object in the system,
a = (a0, a1, · · · , am), includes the value of a function and its first m derivatives. For
example, with m = 3, we can write

a = f [1,3] = (f, fx , fxx , fxxx).

For a function of two variables, assuming equality of mixed partials, the par-
tial derivatives through order m are conveniently arranged in a triangular array.
This is illustrated in FIGURE 1 for m = 3. It is important to note that the entry
in the lower left-hand corner has a special significance. In the derivative struc-
ture f [2,m], the lower left-hand corner is the value of the original function f .

fyyy

fyy fyyx

fy fyx fyxx

f fx fxx fxxx

Figure 1 Layout of f [2,3]

Observe that the array in FIGURE 1 can be decomposed into two parts. The bottom
row is a vector of derivatives with respect to a single variable, as described in the
preceding paragraph. That is, the bottom row is just f [1,3]. The second part, all of the
triangle except the bottom row, is also a derivative structure, namely fy

[2,2]; it contains
the value of fy , and all of its first and second order partial derivatives with respect to
x and y. This gives f [2,3] as a combination of f [1,3] and fy

[2,2].
In a similar way, we can lay out the entries of f [3,3], that is, the partial derivatives

through third order with respect to three variables (see FIGURE 2). The partial deriva-
tives are arranged in a pyramid composed of several triangular layers. Each layer has
the same form as the triangular array in FIGURE 1. As before, there is a distinguished
entry identifying the function f , at the lower left-hand corner of the lowest level.
Also, as before, there is a natural decomposition into two parts. The first part is the

192 MATHEMATICS MAGAZINE

bottom triangular array, which is recognizable as f [2,3]. It contains all partial deriva-
tives through order m = 3 with respect to x and y. The complementary part is the
sub-pyramid made up of levels 2, 3, and 4. This can be recognized as fz

[3,2]. It con-
tains all partial derivatives relative to the three variables x , y, and z, through order 2 of
the function fz . The decomposition gives f [3,3] as a combination of f [2,3] and fz

[3,2].

fzx

f zy fzyx

f z
fzxx

fzyy

fzzy

fzz fzzx

fzzz

fyyy

f

fy fyx fyxx

fx fxx fxxx

fyy fyyx

Figure 2 Layout of f [3,3]

These examples suggest a hierarchy of automatic differentiation objects. For any
n and m, we can imagine a set of objects that contain all partial derivatives through
order m with respect to n variables. These will be our derivative structures. Thus, for
a single variable we have derivative vectors; for two variables, derivative triangles; for
three variables, derivative pyramids; and in general, derivative structures.

The decomposition discussed in the examples above can be described in general us-
ing the terminology of derivative structures. For each example we considered, a deriva-
tive structure of partial derivatives through order m with respect to n variables was
partitioned into two smaller derivative structures. The first part had the same number
of derivatives (m) and one fewer variables (n − 1) than the original structure, while the

VOL. 75, NO. 3, JUNE 2002 193

second part had one fewer derivatives (m − 1) and the same number of variables as
the original. These observations inspire the following recursive definition of derivative
structures.

DEFINITION 1. For m, n ≥ 0, we define DS(n, m), the set of derivative structures
with derivative index m and variable index n, as follows. If m = 0 or n = 0, DS(n, m)

is just R, the real numbers. Otherwise

DS(n, m) = DS(n − 1, m) × DS(n, m − 1)

(where × denotes the Cartesian product).

It should be emphasized here that this definition makes no mention of functions
or derivatives. It abstractly defines a class of objects, built up recursively, and reduc-
ing to real numbers at the lowest level of the recursion. In this context, a derivative
structure is understood most simply as a binary tree, with real numbers as the leaves.
An element a ∈ DS(4, 7), for example, has two components, one in DS(3, 7) and the
other in DS(4, 6). Each of these components likewise has two components, as shown
in FIGURE 3. Each branch of the tree ends when one of the two indices reaches zero,
indicating that the corresponding component is a real number. For a = f [n,m], the real
numbers at the leaves are simply the values of partial derivatives of f . However, this
visualization turns out to be of limited value. Instead, the best approach is to retain the
recursive image of an element of DS(n, m) as an ordered pair, each of whose compo-
nents is a lower order derivative structure.

DS (4,7)

DS (3,7) DS (4,6)

DS (2,7) DS (3,6) DS (4,5)DS (3,6)

Figure 3 Partial Tree for a ∈ DS(4, 7).

The idea of a derivative structure as an ordered pair hints at the connection to Rall’s
automatic differentiation system. Shortly we will see that the definitions for operations
on derivative structures make this connection into a perfect analogy. But there is one
final prerequisite needed. In terms of the triangular arrays and pyramids considered
earlier, the two components of a derivative structure are particular substructures. For
example, if a = (a1, a2) is a derivative pyramid, then a1 is a derivative triangle, and a2

is a smaller derivative pyramid. We also need a third substructure, denoted a∗
1 . Later

an abstract recursive definition of a∗
1 will be provided. But conceptually, think of a∗

1
as follows: If the derivative structure a = f [n,m], then it contains within it f [n,m−1], the
derivatives up to order m − 1. That substructure is a∗

1 . Thus, in FIGURE 1, a1 is the
bottom row, a2 is the sub-triangle consisting of everything but the bottom row, and a∗

1
is the triangle that contains everything except the third order derivatives lying along
the hypotenuse. Notice that a2 and a∗

1 have the same size and shape, but are derivative
structures for different functions. Similarly, in FIGURE 2, the triangle on the lowest
level is a1, the remaining levels form the sub-pyramid a2, and a∗

1 is the sub-pyramid
consisting of everything except the highest order derivatives lying on the slanting outer
face of the pyramid.

194 MATHEMATICS MAGAZINE

This completes the background we need to define derivative structure operations.
We know that a derivative structure a is an ordered pair (a1, a2), that the components
are derivative substructures of lower order, and that a∗

1 is another sub-structure with
the same size and shape as a2. The operations on derivative structures are defined in
terms of these substructures.

Operations on derivative structures

To build expressions out of derivative structures, we need to be able to apply arith-
metic operations and elementary functions. By considering the reciprocal function
r(x) = 1/x as one of our elementary functions, we eliminate the need to define deriva-
tive structure division. To divide a/b we simply multiply a × r(b). Accordingly, the
only arithmetic operations that we need are addition, subtraction, and multiplication.
As a convenience we will also include scalar multiplication.

The definitions of all the arithmetic operations are recursive. The case of addition,
subtraction, and scalar multiplication will make this clear.

DEFINITION 2. For DS(0, m) and DS(n, 0), the elements are real numbers and
addition, subtraction, and multiplication are the usual real number operations. For
n, m > 0, let a = (a1, a2) and b = (b1, b2) be elements of DS(n, m), and let r be a
real number. Then addition, subtraction, and scalar multiplication are defined by

a + b = (a1 + b1, a2 + b2)

a − b = (a1 − b1, a2 − b2)

ra = (ra1, ra2).

Formally, these are identical to the componentwise definitions in Rall’s system. But
they have a slightly different meaning in the present context. To add a and b we must
add their components, which are themselves derivative structures. The computer im-
plementation of the addition is thus recursive. To add two elements of DS(3, 4), for
example, we recall the addition operation for components in DS(3, 3) and in DS(2, 4).
Those additions, in turn, spawn additions of more derivative structures. At each recur-
sion, though, one of the two indices is reduced. Eventually, an index becomes zero,
and the recursion terminates with an addition of real numbers. Subtraction and scalar
multiplication operate similarly.

The definition of multiplication is again an analog of what we saw in Rall’s system.

DEFINITION 3. For DS(0, m) and DS(n, 0) multiplication is defined to be the
usual real number operation. For n, m > 0, if a = (a1, a2) and b = (b1, b2) are ele-
ments of DS(n, m), define

a × b = (a1 × b1, a2 × b∗
1 + a∗

1 × b2).

Formally, this is virtually identical to the one-variable/one-derivative multiplication
rule defined by (1). The only difference is that there are no asterisks in (1). Indeed,
the ordered pairs in Rall’s systems are elements of DS(1, 1), and in that setting, a1

and a∗
1 are identical. However, while there are clear formal similarities between mul-

tiplication in Rall’s system and in DS(n, m), it must be remembered that in the latter
system the definition is recursive. As for the operations of addition, subtraction, and
scalar multiplication, the multiplication of derivative structures requires multiplying
their components, and hence a recursive use of multiplication. And as we saw earlier,
the recursive process keeps generating more and more multiplications, finally reaching

VOL. 75, NO. 3, JUNE 2002 195

a point at which the derivative objects reduce to real numbers. So, while the multiplica-
tion definition seems to have the same simplicity as in Rall’s system, under the surface
there is a complex sequence of operations implicitly defined.

Finally we come to the elementary functions. Given a derivative structure a and an
elementary function φ, we wish to define φ(a). Once again, the definition is almost
identical to what appeared in Rall’s system.

DEFINITION 4. Let φ be an m-times differentiable function of a real variable. If
m = 0 or n = 0, DS(n, m) is just R and φ is applied to the elements in the usual way.
For n, m > 0, if a = (a1, a2) ∈ DS(n, m), define

φ(a) = (
φ(a1), φ

′(a∗
1) × a2

)
.

This definition is a direct analog of (4), to which it reduces in the case that
n = m = 1. As we saw with multiplication, the only formal difference is the ap-
pearance of an asterisk in the general derivative structure definition. Here again, the
actual computation of φ(a) is recursive, and the recursion terminates when φ or one
of its derivatives is finally called upon to operate on a real number.

That’s it. That is all you need to construct arbitrary elementary function expressions
involving general derivative structures. As promised, the definitions are virtually the
same as those in Rall’s system, and yet they provide for the automatic generation of
partial derivatives to essentially arbitrary order with respect to an essentially arbitrary
number of variables. But the presentation is not quite complete. We still have to see
how to create the fundamental derivative structures that correspond to constants and
variables. And at some point we need to see why the definitions just given really work.

Fundamental derivative structures

So far, we have defined derivative structures and their operations abstractly, without
mention of functions and partial derivatives. To make the connection with automatic
differentiation clear, we must have a definition of f [n,m] as an element of DS(n, m).

DEFINITION 5. Let f be a function of at least n variables with continuous partial
derivatives through order m, and let x be an element of the domain of f . Then the
derivative structure for f with derivatives through order m with respect to the first n
variables is given at x by

f [n,m](x) =
{

f (x) if n = 0 or m = 0(
f [n−1,m](x), (∂n f)[n,m−1](x)

)
otherwise

where ∂n denotes partial differentiation with respect to the nth variable of f .

This definition is a formalization of the pattern we saw in special cases, but some
caution is needed. How do we know that f [n,m], as defined here, really does contain
all the partial derivatives it is supposed to? For now the reader is asked to accept the
validity of the definition. We will return to the justification in the next section.

Given the preceding definition, we can construct derivative structures for constants
recursively. For example, to create the derivative structure for the constant 5, we con-
sider the constant function f (x, y, z, . . .) ≡ 5. Now f [n,m] has two components. The
first is f [n−1,m], and that can be constructed recursively. The second is ∂n f [n−1,m], and
since f is constant, the partial derivative is 0. But that is again a constant function.
Thus, a recursive construction algorithm can operate similarly to the operation al-
gorithms. To construct a constant in DS(n, m), we must first construct constants in

196 MATHEMATICS MAGAZINE

DS(n − 1, m) and DS(n, m − 1). The recursion proceeds until one index becomes 0,
and at that point the value of the constant is returned. That constant is 5 just once,
corresponding to tracing the left branch all the way down the tree to a leaf. In any
path that involves a right branch, the function will be differentiated at least once, and it
will be a zero function that is finally evaluated. On some level, however, this image is
irrelevant. All that really matters is that a simple recursive construction algorithm for
constants exists in the automatic differentiation system.

To illustrate the situation for the independent variables, let’s consider the function
I2(x, y, z) = y. How do we construct I2

[3,2] at y = 8, for example? At the top level,
I2

[3,2] is an ordered pair. The first component is I2
[2,2], which will be constructed recur-

sively. The second component is ∂z I2
[3,1], and since ∂z y = 0 that is just the derivative

structure of the constant 0. It can be constructed using the algorithm for a constant.
At the next level, I2

[2,2] is decomposed into I2
[1,2] and ∂y I2

[2,1]. For the first of these,
notice that the first index is 1. This is a derivative structure that does not involve any
derivatives with respect to y, and for its construction we can treat y as the constant 8.
For the second component, ∂y I2 = ∂y y = 1. Again we need only construct a deriva-
tive structure for a constant. In a similar way, the derivative structure for any of the
independent variables can be constructed recursively. Indeed, x j

[n,m] = (a1, a2) is de-
fined as follows: If j < m, then a1 is defined by a recursive construction of x j

[n,m−1]
and a2 is a derivative structure for the constant 0. If j = m, then a1 is constructed as
a constant derivative structure, with whatever value was assigned to x j , and a2 is the
derivative structure for the constant 1. And if j > m, a1 is again a constant derivative
structure with the value of x j , but a2 is the derivative structure of the constant 0.

This is the construction used to define DS-Make-Var in the sample computation
presented earlier. In fact, if you review that computation, you will see that we have
now defined every operation that appears there. The automatic differentiation system
is complete. With algorithms for constructing derivative structures for independent
variables and constants, and definitions of derivative structure operations and elemen-
tary functions, nothing more is needed. However, we have yet to see any verification
that the system actually works. How do we know, for example, that the arithmetic defi-
nitions propagate derivatives correctly? How do we know that applying an elementary
function to a derivative structure as in Definition 4 produces the desired derivative
information at the end? For that matter, how do we even know that the recursive defi-
nition for f [n,m] is correct? The next section will address these questions.

Validation of the system

There are two aspects of the system that require validation. First, we have to verify
that the recursive definition of f [n,m] properly represents the intuition suggested by the
triangle and pyramid examples. Second, it must be established that the definitions of
derivative structure operations correctly propagate derivative information. That is, we
must see that

f [n,m] + g[n,m] = (f + g)[n,m]

f [n,m] − g[n,m] = (f − g)[n,m] (6)

f [n,m] × g[n,m] = (f g)[n,m]

and

φ(f [n,m]) = (φ ◦ f)[n,m]. (7)

VOL. 75, NO. 3, JUNE 2002 197

For both of these ends, expressing a derivative structure a as an ordered pair
(a1, a2) and referring to the components and to a∗

1 will be of central importance.
It simplifies the presentation to express these substructures using an operator no-
tation. Thus, if a = (a1, a2) is a derivative structure, we define V (a) = a1 and
D(a) = a2. The names of these operators reflect the meaning of the components
in the one-variable/one-derivative system, where a1 is the value of the function, and a2

is the derivative. Recall that a∗
1 is obtained from a by removing all the highest order

derivatives, so that a∗
1 is a lower order version of a. Accordingly, we use the notation

L(a) = a∗
1 .

Although the conceptual meaning of the operators is clear, formal definitions will
be given for completeness. For L , this is particularly important as there has not yet
been given an abstract definition in terms of derivative structures.

DEFINITION 6. Let a ∈ DS(n, m). If n = 0 or m = 0, a is a real number and
V (a), D(a), and L(a) are all defined to equal a. Otherwise, a = (a1, a2). In this case,
we define V (a) = a1, D(a) = a2, and L(a) according to

L(a) =
{

L(a1) if m = 1
(L(a1), L(a2)) if m > 1.

It may not be immediately apparent that this definition of L is consistent with the
earlier explanation of a∗

1 . The reader may wish to verify that the definition works cor-
rectly for triangles and pyramids. However, for the arguments that will follow, it is not
logically necessary to connect the definition of L with the conceptual image of f [n,m].
Instead, we will be content to take L(a) as the definition of a∗

1 , and show that this
definition has the properties we need for automatic differentiation.

The three operators provide the means to connect the abstract definition of DS(n, m)

to the ideas illustrated by the derivative vectors, triangles, and pyramids. As a first in-
stance of this, we have the following result.

THEOREM 1. Derivative structures for functions are related to the operations V ,
D, and L as follows:

V (f [n,m]) = f [n−1,m]

D(f [n,m]) = (∂n f)[n,m−1]

L(f [n,m]) = f [n,m−1].

If the derivatives in f [n,m] are laid out as in the examples of triangles and pyramids,
these identities are obvious. However, it is possible to prove the identities using only
the abstract definitions of the operators and of f [n,m]. In fact, the first two identities are
immediate consequences of the abstract definition of f [n,m]. The third identity can be
proved by a straightforward induction argument that exploits the recursive definitions
of both f [n,m] and L . This same style of proof is effective for a number of the results
to follow, and while a detailed proof for the third identity above will not be given, a
sample proof will be given for a later theorem. In any case, it is important to note that
the induction proof uses only the abstract definitions of L and f [n,m], and so makes no
direct use of the full image of how partial derivatives are laid out in f [n,m]. Thus, the
fact that the third identity can be established by an abstract proof confirms that, at least
in this regard, L and f [n,m] operate according to expectation.

Theorem 1 lends itself to a simple formal algorithm for applying V , D, or L
to f [n,m]: V decrements the variable index by 1; L decrements the derivative index
by 1; and D both decrements the derivative index and differentiates f once with re-

198 MATHEMATICS MAGAZINE

spect to the nth variable. Using just the first two of these rules we can prove the next
result.

THEOREM 2. Suppose f [n,m] is defined at x. Let e j be a nonnegative integer for
1 ≤ j ≤ n with

∑
e j ≤ m. Then the partial derivative ∂

e1
1 · · · ∂en

n f (x) can be obtained
from f [n,m](x) as follows: If

∑
e j = m then

∂
e1
1 · · · ∂en

n f (x) = De1 V De2 V · · · V Den f [n,m](x);
otherwise

∂
e1
1 · · · ∂en

n f (x) = V De1 V De2 V · · · V Den f [n,m](x).

The proof is simply a matter of applying the identities in Theorem 1. Rather than
present the details in a formal way, it will be more illuminating to work through
an example. Consider the derivative structure f [3,6] and suppose we want to obtain
∂2

1∂2∂
2
3 f (x). Since this is a fifth derivative and m = 6, the theorem says to compute

V D2V DV D2 f [3,6]. We can verify that the desired result is obtained by applying the
identities in Theorem 1 as follows:

V D2V DV D2 f [3,6](x) = V D2V DV (∂2
3 f)

[3,4]
(x)

= V D2V D(∂2
3 f)

[2,4]
(x)

= V D2V (∂2∂
2
3 f)

[2,3]
(x)

= V D2(∂2∂
2
3 f)

[1,3]
(x)

= V (∂2
1∂2∂

2
3 f)

[1,1]
(x)

= (∂2
1∂2∂

2
3 f)

[0,1]
(x)

= ∂2
1∂2∂

2
3 f (x).

This example reveals the general nature of the algorithm for extracting a particu-
lar derivative from f [n,m]. Notice that the D operator only performs differentiation of
f [n,m] with respect to xn . But each time we apply V , we reduce the value of n, and
hence change the variable that D differentiates. If we want a certain number of deriva-
tives with respect to xn , we apply D that many times. Then we apply V , in effect,
shifting the focus to xn−1. If we want one or more derivatives with respect to xn−1, we
apply D that many times again. So we continue, alternately applying D to differenti-
ate and V to shift to a new variable, until all the desired derivatives have been applied.
For an mth derivative, there will be m applications of D, reducing the derivative index
to 0, and so reducing the derivative structure to a real number. Otherwise, there will
be exactly n applications of V . This will reduce the variable index to 0, and so again
result in a real number.

It should be stressed again that the operators V and D were defined completely
abstractly, with no reference to derivatives. In a computational system, a particular
derivative structure is simply an organized network of memory locations which store
real values. The algorithm above navigates through such a network to a particular
entry. Theorems 1 and 2 show that when a derivative structure is constructed according
to the abstract definition of f [n,m], the desired derivative values can all be located and
extracted. More specifically, visualizing the network as a binary tree, each application
of V selects a left branch from a node, each application of D selects a right branch, and
after either m applications of D or n applications of V a terminal node is reached. Thus,

VOL. 75, NO. 3, JUNE 2002 199

Theorem 2 can be understood as a prescription for finding the appropriate terminal
node for a particular partial derivative.

To complete the validation of the system, we must see that derivative structure op-
erations really do succeed in constructing f [n,m]. That is, we must verify (6) and (7).
The formal statement is given in the following theorem.

THEOREM 3. Let f and g be real valued functions of n or more variables, with
continuous partial derivatives through order m, let x be in the domain of f and g,
let r be a real number, and let φ be a real function m times differentiable at f (x).
Then the following identities hold:

f [n,m](x) + g[n,m](x) = (f + g)[n,m](x)

f [n,m](x) − g[n,m](x) = (f − g)[n,m](x)

r f [n,m](x) = (r f)[n,m](x)

f [n,m](x) × g[n,m](x) = (f g)[n,m](x)

φ(f [n,m](x)) = (φ ◦ f)[n,m](x).

As mentioned earlier, the recursive nature of the definitions makes induction a nat-
ural approach to proving results like these. To illustrate, here is a proof of the final
identity above. It assumes that the preceding identities have already been established.

Proof. The proof is by induction on n + m. If either n or m is zero, the conclu-
sion holds trivially. So assume that both n and m are positive, and that the conclusion
holds for f [n′,m′] whenever n′ + m ′ < n + m. From the definition of φ for derivative
structures, if f [n,m](x) is expressed as the pair (a1, a2), then

φ
(

f [n,m](x)
) = (

φ(a1), φ
′(a∗

1) × a2

)
.

In terms of the V , D, and L operators, this becomes

φ
(

f [n,m](x)
) = (

φ
(
V f [n,m](x)

)
, φ′ (L f [n,m](x)

) × D f [n,m](x)
)
.

Applying Theorem 1 we obtain

φ
(

f [n,m](x)
) = (

φ
(

f [n−1,m](x)
)
, φ′ (f [n,m−1](x)

) × (∂n f)[n,m−1](x)
)
.

Now we are ready to use the induction hypothesis. On the right side of the preced-
ing equation, the real functions φ and φ′ are applied to derivative structures with lower
order than f [n,m](x). By induction, we can bring φ and φ′ inside their respective paren-
theses, leading to

φ
(

f [n,m](x)
) =

(
(φ ◦ f)[n−1,m](x), (φ′ ◦ f)

[n,m−1]
(x) × (∂n f)[n,m−1](x)

)
.

Similarly, the identity for derivative structure multiplication allows us to bring the
product on the right side of the equation inside the parentheses. Performing that reduc-
tion and recognizing the normal real function chain rule then produces

φ(f [n,m](x)) =
(
(φ ◦ f)[n−1,m](x), (φ′ ◦ f · ∂n f)

[n,m−1]
(x)

)

= (
(φ ◦ f)[n−1,m](x), [∂n(φ ◦ f)][n,m−1](x)

)
= (φ ◦ f)[n,m](x).

This shows that the identity holds for f [n,m], completing the induction argument.

200 MATHEMATICS MAGAZINE

This concludes the validation of the recursively defined automatic differentiation
system. It has been demonstrated that the simple recursive definitions for derivative
structure operations properly propagate partial derivatives. To put it more simply, we
have seen that the recursive automatic differentiation system works. In a final section,
we discuss a few ideas connected with implementation and computational efficiency.

Implementation and efficiency

The recursive automatic differentiation system presented here can be implemented in
any computer programming language that supports recursion. A working version is
described in [6]. There, the interested reader will find LISP code for the entire system,
amounting to about 150 lines. Although the presentation in [6] is from a different point
of view than the double recursion described here, the LISP code can be considered an
implementation of either point of view. In fact, the double recursion described here
was discovered as a direct result of studying the implementation in [6]. It should also
be mentioned that the original idea for treating the number of derivatives recursively
is due to Neidinger [8]. His work provided a critical inspiration for both the approach
of [6] and the double recursion presented here.

It is beyond the scope of this paper to discuss the LISP implementation in detail.
However, there is one aspect that is worth considering. The programming for the
automatic differentiation system must include derivative structure formulations for
all the familiar elementary functions: exponential, sine, cosine, etc. Each of these is
programmed according to Definition 4. Interestingly, this definition can be imple-
mented quite generally, and then used to create the procedures for all the desired
elementary functions. The basic idea is to define a procedure that will combine
the original function φ, the derivative φ′, and the derivative structure a to com-
pute φ(a). For the sake of discussion, let us call the procedure Compose. It will take as
arguments procedures phi and phi-prime, and a derivative structure a. If a is ac-
tually just a real value, Compose applies phi to a and returns the result. Otherwise,
Compose uses the V , D, and L operators to compute a1, a2, and a1*, respec-
tively. Then it applies phi to a1, phi-prime to a1*, and returns the ordered pair
(phi(a1), phi-prime(a1*) * a2).

All of the elementary functions are defined in terms of the procedure Compose. For
example, here is what the definition of the derivative structure exponential function
might look like:

Function DS-Exp(a)
if a is real

return exp(a)
else

return Compose(DS-Exp, DS-Exp, a)
end

Note that DS-Exp plays the role of both phi and phi-prime in the call to
Compose. Thus, the computation of DS-Exp(a) requires evaluations of DS-Exp(a1)
and DS-Exp(a1*). This is simply a direct implementation of the recursive nature of
Definition 4. In a similar way, the reciprocal function is defined as follows:

Function DS-Recip(a)
if a is real

return 1/a
else

VOL. 75, NO. 3, JUNE 2002 201

return Compose(DS-Recip, DS-DRecip, a)
end

Here, DS-DRecip is a derivative structure function that plays the role of the
derivative of the reciprocal function. That is, with φ(x) = 1/x , the derivative is
φ′(x) = −1/x2. This can be defined by

Function DS-DRecip(a)
recip-a = DS-Recip(a)
return -1 * recip-a * recip-a

And now that we have defined the reciprocal function, it is no problem to add the
natural logarithm.

Function DS-Ln(a)
if a is real

return ln(a)
else

return Compose(DS-Ln, DS-Recip, a)
end

As these examples suggest, the development of a complete automatic differentia-
tion system requires very little programming, once the derivative structure operations
are in place. For each elementary function that is included, the developer does have to
explicitly specify the derivative. However, that is a small price to pay for the automatic
generation of derivatives to essentially arbitrary order. And in any case, one cannot
reasonably hope to avoid defining derivatives altogether in a system that is supposed
to compute derivatives automatically. In comparison to other approaches to automatic
differentiation for higher derivatives [2, 7], the development presented here is remark-
ably simple.

This simplicity streamlines the task of implementing an automatic differentiation
system. How the system performs is quite another issue, and it turns out that the ele-
gance of the recursive approach is accompanied by some significant sources of inef-
ficiency. While we will not take up this issue in any significant way here, a few brief
comments are in order.

A little reflection reveals that a naive implementation of the doubly recursive ap-
proach involves widespread recomputation of previously obtained results. To illustrate
this idea, consider the third derivative of the product f g. We know by Leibniz’ rule
that

(f g)′′′ = f ′′′ + 3 f ′′g′ + 3 f ′g′′ + g′′′.

This can be derived by repeatedly applying the product rule, and then algebraically
simplifying the result. In particular, three different terms, each equal to f ′′g′, would
appear, giving rise to the single term 3 f ′′g′ in Leibniz’ rule. The recursive automatic
differentiation system is similar to repeatedly applying the product rule without alge-
braic simplification. That would entail three separate evaluations of f ′′g′.

In contrast, Neidinger [9] has developed a multivariate automatic differentiation
system that uses explicit looping and subscripting. This system avoids the recompu-
tation that can arise in the recursion process, and should be expected to outperform a
direct implementation of the design presented here.

Inspired by Neidinger’s approach, there are obvious strategies for reducing some
of the recursive approach’s inefficiency. In particular, a carefully optimized multipli-
cation procedure, based on Leibniz’ rule rather than simple recursion, might make a

202 MATHEMATICS MAGAZINE

significant impact. Another attractive idea is to identify and exploit redundant calcu-
lations in the recursion process. Yet another improvement would be to take advantage
of sparseness, eliminating computations that ultimately lead to multiplication by zero.
Whether a modified version of the recursive system would be competitive with Nei-
dinger’s system is a question for further study.

However, no matter what formulation is used, direct computation of all partial
derivatives of an expression is simply not the fastest approach. A more efficient al-
ternative is to use systems of univariate automatic differentiation computations and
an interpolation scheme [1]. Although this does increase memory requirements, it is
easily shown to produce huge reductions in execution for large scale systems. Thus,
for example, in a system with several hundred variables and a need for third order par-
tial derivatives, any direct computation of all partial derivatives would be much slower
than the alternative using interpolation.

On the other hand, computational speed is not always an issue. An automatic differ-
entiation system of the type described here has been used successfully in an interactive
application for analyzing systems of constraints arising in the design of satellite sys-
tems. In that context, automatic differentiation was used to perform sensitivity analyses
among dozens of variables. For this application, computation was limited by the speed
of user input, not by the speed with which the automatic differentiation system op-
erated. In that situation, the speed of the automatic differentiation system was of no
concern at all.

More generally, as computational speed continues to increase, the importance of
execution efficiency will continue to decline, particularly for problems with small
numbers of variables. In these cases, the directness and simplicity of the current de-
velopment offers an attractive paradigm for implementing an automatic differentiation
system.

Acknowledgment. This paper is based on an invited address at the January 1997 AMS/MAA meeting [5].

REFERENCES

1. C. Bischof, G. Corliss, and A. Griewank, Structured second- and higher-order derivatives through univariate
Taylor series, preprint MCS-P296-0392, Argonne National Laboratory, Argonne, Illinois, May 1992.

2. H. Flanders, Automatic differentiation of composite functions, in Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, A. Griewank and G. F. Corliss, eds., SIAM, Philadelphia, 1991,
pp. 95–99.

3. A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM,
Philadelphia, 2000.

4. A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, SIAM, Philadelphia, 1991.

5. D. Kalman, Automatic differentiation: computing derivative values without derivative formulas, Invited ad-
dress, Joint Meetings of the American Mathematical Society and the Mathematical Association of America,
San Diego, January 1997.

6. D. Kalman and R. Lindell, Recursive multivariate automatic differentiation, Optimization Methods and Soft-
ware 6 (1995), 161–192.

7. C. L. Lawson, Automatic differentiation of inverse functions, in Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, A. Griewank and G. F. Corliss, eds., SIAM, Philadelphia, 1991,
pp. 87–94.

8. R. D. Neidinger, Automatic differentiation and APL, College Math. J. 20 (1989), 238–251.
9. R. D. Neidinger, An efficient method for the numerical evaluation of partial derivatives of arbitrary order,

ACM Transactions on Mathematical Software 18 (1992), 159–173.
10. L. B. Rall, The arithmetic of differentiation, this MAGAZINE 59 (1986), 275–282.

