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It’s really coming down! As you ease into the nearest free parking spot in front of the
supermarket the feeling of dread builds—you’re going to get wet. But your mathemat-
ical mind wonders, what can I do, caught as I am without an umbrella, to stay as dry
as possible as I make a run across the parking lot to the supermarket door? Will I stay
drier if I run faster? Is there an optimal speed that will minimize my exposure?

These questions are not new, but they do have a knack for stumping people. Indeed,
back in 1972, the MAGAZINE published a piece on this subject [3], and the following
year issued a corrected version [10], as the original was deeply flawed. This pattern was
repeated in the meteorological community in the mid 1990s, when the journal Weather
published one piece [7] in 1995, and offered a corrected version (by different authors)
in 1997 [9]. Even the television program Mythbusters got it wrong (episode 1) and
later offered the revised conclusion that running usually trumps walking (episode 38).
The results of these studies were summarized neatly in limerick by Matthew Wright
[11] in 1995:

When caught in the rain without mac,
Walk as fast as the wind at your back,
But when the wind’s in your face
The optimal pace
Is fast as your legs will make track.

In 2002, however, Herb Bailey [2] pointed out that the limerick above is only par-
tially correct. It is true that in the case of a head-wind one should travel as quickly as
possible. But although one does indeed stay driest by traveling “as fast as the wind at
your back” in the case of a strong tail-wind, if the tail-wind is sufficiently weak, run-
ning “as fast as your legs will make track” is better. In fact, Bailey’s argument is simply
a restatement of the corrected MAGAZINE piece of 1973, where the same observation
was made.

All of these analyses use a rectangular solid to model our damp traveler. In this
paper we will study the prospects for more well rounded individuals. Our results for
ellipsoidal travelers, for example, show that indeed, shape matters! For such travelers
we take further issue with Wright’s limerick. Our model suggests that in the presence
of a tail-wind, however weak, it is always beneficial to move faster than the “wind at
your back.” In fact, we feel compelled to offer the following advice:

When you find yourself caught in the rain,
while walking exposed on a plane,
for greatest protection
move in the direction
revealed by a fair weather vane.

Moving swift as the wind we’ll concede,
for a box shape is just the right speed.
But a soul who’s more rounded
will end up less drownded
if the wind’s pace he aims to exceed.

∗Please direct correspondence to Dan Kalman (kalman@american.edu), American University, Washington,
DC 20016, and Bruce Torrence (btorrenc@rmc.edu), Randolph-Macon College, Ashland, VA 23005.
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Getting wet

We begin with some assumptions. First, since the subject has forgotten to bring an um-
brella, it is reasonable to assume masculine gender. Thus we sacrifice gender neutrality
and refer to him accordingly. Next we ask, how exactly is our wandering mathemati-
cian going to get wet? We will assume that rain is falling uniformly with constant
velocity (no gusts). We represent this velocity by the vector vr whose vertical compo-
nent is negative. The key idea is this: focus on the region occupied by all the raindrops
that will strike the traveler during his trip. We call this the rain region. The amount of
water striking the traveler will be in proportion to the measure of the rain region (area
in two dimensions, volume in three). Accordingly, we adopt this geometric measure as
an index of total wetness.

Suppose first that our hero is standing still. Then regardless of the shape of our
traveler, for each point P on his body that will be hit by a raindrop, we can draw a
line segment of fixed length into space from P in the direction −vr and conclude that
every raindrop that will strike P in a certain time frame lies precisely on this segment.
Hence the rain region is the generalized cylinder composed of the union of all such
line segments (one for each point on his body that is exposed to the elements).

Now assume that our traveler moves at a constant speed s > 0 along a horizontal
line, and adopt a distance measure so that he travels a total distance of one unit. We
orient a Cartesian coordinate system in such a way that a reference point on our trav-
eler starts at the origin and moves in the positive x direction. Thus the mathematician’s
velocity vector is vm = 〈s, 0〉 in a two-dimensional model, or vm = 〈s, 0, 0〉 in three.
He is exposed to the elements for a finite amount of time, specifically 1/s. The rain
region consists of all initial locations from which a raindrop can land on the mathe-
matician. Let Q be such a location, corresponding to a raindrop that will land at time
t . Then it will strike the mathematician at the point Q + vr t . That point in turn has
traveled with the mathematician from its original location P = Q + vr t − vmt . Thus
for every exposed point P on the mathematician at time 0, the point P + (vm − vr )t
is in the rain region for 0 ≤ t ≤ 1/s. This shows that the rain region is made up of
line segments parallel to the apparent rain vector v = vr − vm, each terminating at
an exposed point on the mathematician at time 0, and each of length ‖v‖ /s. A two-
dimensional rendering of this scenario is shown in FIGURE 1 for two different bodies
(one rectangular, one elliptical) and three different walking speeds, all in the case of a
moderate head-wind. The figures correctly suggest that in these conditions, regardless
of the precise shape of his body, the faster he moves, the smaller the area of the rain
region, and hence the drier he stays.

Rectangular bodies In the case of a two-dimensional rectangular body as shown in
the first row of FIGURE 1, the total wetness measure is simply the sum of the areas of
two parallelograms, and analysis is straightforward. In the case of a three-dimensional
rectangular solid body, the total wetness measure is the sum of the volumes of three
parallelepipeds. That is, for each of the three exposed faces of the body, one finds the
volume of the parallelepiped containing the rain that will strike this face. This volume
is the product of area of the face with the magnitude of the projection of the vector v/s
onto a line orthogonal to the face. For details, we refer the reader to Bailey [2] (who
gives an equivalent, although less geometric analysis).

One of the advantages of our geometric approach is that it is easy to visualize the
extreme cases. For a two-dimensional traveler whose speed precisely matches that of
a tail-wind, the apparent rain vector is vertical. That is, all the rain that will strike our
traveler lies directly above his initial position. At the other extreme, if we imagine that
our mathematician is moving infinitely fast, the apparent rain vector is horizontal, for
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Figure 1 Two different 2-dimensional bodies (yes, 2-dimensional—do not be misled into
interpreting these as 3-dimensional figures) each moving at three different speeds. One
is rectangular, one elliptical, and they travel under the same rain conditions (a moderate
head-wind) from point A to point B, a total distance of one unit. Total wetness is measured
as the area of the rain region, the region containing the rain that will strike the body.

all the rain that will strike him (or, more accurately, that he will strike) lies directly
in front of him. Between these extremes, where our rectangular hero’s speed is finite
but exceeds that of any tail-wind, the area of the parallelogram containing the rain that
will strike his front side is exactly that of the rectangle holding the rain that would
strike his front side were he moving infinitely fast. But in this case the rain region also
includes the parallelogram holding the rain that will strike his top side (and the area of
this parallelogram diminishes as his travel speed increases). A practical conclusion is
that in the absence of a tail-wind, a body stays driest by running as fast as possible.

However, in the case of a strong tail-wind (strong here is a relative term—in three
dimensions it must be at about human walking speed in the absence of a cross-wind,
but stronger if there is a cross-wind—see Bailey [2]), the optimal speed of travel for a
cereal-box-shaped mathematician is precisely the speed of the tail-wind. It is easy to
show the total wetness measure T as a function of the speed s of travel, has a critical
point, though not necessarily a local minimum, at the speed w of the tail-wind. FIGURE

2 illustrates this, showing the graphs of T for various cross-wind values. Note that for
all cross-wind values, the limit of T as the travel speed s → ∞ is simply the area of
the front face of the body. This shows that all T graphs share a common horizontal
asymptote. When the cross-wind is sufficiently strong, the limiting value is a lower
bound for the total wetness: the faster you go, the drier you stay. But for weaker cross-
winds the T curve approaches the asymptote from below. In this case, going too fast
actually makes you wetter. A dynamic version appears at the MAGAZINE website.

Other body shapes Similar methods apply to bodies that are more complex polyhe-
dral solids. For each exposed face of the body, one finds the volume of a generalized
cylinder with the face as its base. Its volume is the area of this face times the magnitude
of the projection of the vector v/s onto a line orthogonal to the face. Summing these
volumes over all exposed faces gives a measure of the total amount of rain to strike
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Figure 2 Total wetness as a function of s = speed of travel when traveling one distance
unit. The speed w of the tail-wind is constant. Several wetness functions are shown for
various cross-wind speeds. All are asymptotic to the horizontal line y = A, where A is
the area of the front face of the traveler.

the body. For smooth surfaces, one could refine this approach into a surface integral.
However, even for such simple surfaces as ellipsoids the resulting integral is difficult.

An alternate method that we pursue in the remainder of this work is to calculate
the area of the projection of the body along the apparent rain vector v onto a plane
orthogonal to v. The volume of the rain region will be equivalent to the volume of the
right cylinder whose base is this projection, and whose height is the magnitude ‖v‖ /s,
as illustrated in FIGURE 3 for an ellipsoidal body.

Figure 3 Orthogonal projection of the body along the apparent rain vector to obtain a
right cylinder of volume equal to the rain region

Spherical bodies Few people are spherical in shape (although this is a widely ac-
cepted model for cows [6], and they may also wish to keep dry). Be that as it may,
spherical bodies provide an irresistible temptation for modeling due to their symme-
try. In the case of a spherical body, its orthogonal projection onto any plane through
its center is always a disk of the same radius. In particular, variations in the apparent
rain direction due to changes in the body’s speed do not change the area of the projec-
tion. Take a spherical body of radius r , and once and for all let us fix the rain vector
vr = 〈wt , wc, −l〉, so that a tail-wind is represented by a positive value for wt , the
cross-wind is represented by wc, and l > 0 represents the downward speed of the rain.
Using the projection approach outlined in FIGURE 3, our measure of total wetness is
πr 2 times the magnitude of the vector v/s = (vr − vm)/s = 〈wt − s, wc, −l〉/s. Thus
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we may write the total wetness function T as

T (s) = πr 2
√

(wt − s)2 + w2
c + l2

s
.

It is easily verified that this function has a limiting value of πr 2 as s → ∞, is strictly
decreasing on (0, ∞) when wt < 0 (head-wind present), and that it has an absolute
minimum at its lone critical point

s = w2
t + w2

c + l2

wt
= ‖vr‖2

wt

when wt > 0 (tail-wind present). Thus, in contrast to the situation where the body
was modeled with a rectangular solid, whenever there is a tail-wind, however weak,
there is a particular speed s at which a spherical body stays driest. Moreover, since the
vertical component l of the rain vector is nonzero, this speed is strictly greater than
the speed wt of the tail-wind. This surprising state of affairs manifests itself not only
for the sphere but for capsules and ellipsoids.

R2-D2 It is a reasonably simple matter (at least in theory) to apply this analysis to
a body that is a union of solids. Some shapes are particularly simple. Imagine, for
instance, a capsule-shaped body composed of a right circular cylinder whose axis is
parallel with the z axis, capped above and below by a hemisphere of the same radius—
a bit like the Star Wars droid R2-D2. An analysis like that for the sphere shows that if
there is a tail-wind, however slight, there is a definite speed s at which the body should
move which minimizes the amount of rain to strike the body. As in the case of the
sphere, this optimal speed is strictly greater than the speed of the tail-wind.

Ellipsoidal projections

In order to generalize the above result to ellipsoidal bodies, it is necessary to calculate
the area of the orthogonal projection of the ellipsoid along the apparent rain vector.
This entire section is devoted solely to this endeavor; those readers whose primary
interest is in the results for ellipsoidal travelers may safely skip ahead to the next
section.

For nonspherical ellipsoids, the area of the orthogonal projection of the ellipsoid
along the apparent rain vector will vary as the speed of travel (and hence the apparent
rain vector) changes, and so things are considerably more complicated than with the
case of the sphere. Nevertheless, there turns out to be a simple formula for the area of
the projection. In fact, it generalizes beautifully to n dimensions. Pursuing this more
general approach, we unify the analysis for two and three-dimensional models. As a
side benefit, we easily obtain results for an n-dimensional ellipsoidal mathematician
dashing through the rain.

We consider an n-dimensional ellipsoid in R
n , and will compute the n − 1 dimen-

sional measure of its projection on a hyperplane orthogonal to a given vector. Not
surprisingly, matrices and determinants play a central role in the derivation. To begin,
we prove a computational lemma that will be useful in the main argument. This re-
sult is a special case of a more general identity for the determinant of A + B when B
is a rank one matrix. The general version, which is derived with a simple partitioned
matrix argument in Meyer [8, p. 475], is equivalent to the Cauchy expansion of the
determinant [1, pp. 74–75].
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LEMMA. For any collection p1, p2, . . . , pn of nonzero real numbers, and any col-
lection r1, r2, . . . , rn of real numbers, the n × n matrix

M =

⎛
⎜⎜⎝

p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...

0 0 · · · pn

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

r1

r2
...

rn

⎞
⎟⎟⎠(

r1 r2 · · · rn

)

has determinant p1 p2 · · · pn

(
1 + r2

1
p1

+ r2
2

p2
+ · · · + r2

n
pn

)
.

Proof. Let e1, e2, . . . , en denote the standard basis vectors for R
n , and let r =

〈r1, r2, . . . , rn〉. Note that row j of the matrix M is the vector p j e j + r j r. Since the
determinant function is n-linear in the rows of M , and since each row of M is itself a
sum, we may express Det(M) as an expansion, where each row in each matrix whose
determinant appears in this expansion is either a multiple of a standard basis vector, or
a multiple of r. Note that in this expansion many terms are zero. In particular, the deter-
minant of any matrix with two or more rows that are multiples of r is zero. Removing
these terms, the expansion of the determinant of M has the following form:

Det

⎛
⎜⎜⎝

p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...

0 0 · · · pn

⎞
⎟⎟⎠ + r1 Det

⎛
⎜⎜⎝

r1 r2 · · · rn

0 p2 · · · 0
...

...
. . .

...

0 0 · · · pn

⎞
⎟⎟⎠

+ r2 Det

⎛
⎜⎜⎝

p1 0 · · · 0
r1 r2 · · · rn
...

...
. . .

...

0 0 · · · pn

⎞
⎟⎟⎠ + · · · + rn Det

⎛
⎜⎜⎝

p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...

r1 r2 · · · rn

⎞
⎟⎟⎠

and the result follows.

Proceeding with our analysis, we characterize an ellipsoid in R
n using matrices.

Given any real symmetric n × n matrix M with positive determinant, we define the
generalized ellipsoid for M to be the set of (row) vectors x = 〈x1, x2, . . . , xn〉 ∈ R

n

that satisfy the quadratic form equation xMxT = 1. Note that there exists a real or-
thogonal matrix P with the property that P M P−1 is a diagonal matrix (with the same
determinant as M). Note also that for any collection a1, . . . , an of positive real num-
bers, the diagonal matrix

D =

⎛
⎜⎜⎜⎝

a−2
1 0 · · · 0
0 a−2

2 · · · 0
...

...
. . .

...

0 0 · · · a−2
n

⎞
⎟⎟⎟⎠

yields the standard generalized ellipsoid with equation x2
1/a2

1 + x2
2/a2

2 + · · · + x2
n/a2

n =
1. This ellipsoid has volume Una1 · · · an , where Un is the volume of the unit sphere in
R

n (as can be seen from the fact that the linear transformation x 
→ 〈a1x1, . . . , an xn〉
with determinant a1 · · · an maps the unit sphere onto this ellipsoid). Noting that for
the diagonal matrix D above we have 1/

√
DetD = a1 · · · an , and that the ellipsoid

associated with the matrix P−1 DP has the same volume, we see that the ellipsoid
associated with the matrix M has volume Un/

√
DetM .
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Note that the quantity Un can be worked out explicity, and in fact is given by the
equation Un = 2πn/2/(n�(n/2)). Although this is moderately involved, things sim-
plify nicely by considering the even and odd cases separately. For example, in even
dimensions we have U2n = πn/n!. Zatzkis [12] gives a complete derivation of this.
Also, Fraser [5] and Dahlka [4] give clever derivations that do not make use of the
gamma function.

Now let us turn to projections. For any nonzero n-dimensional vector w, let πw :
R

n → R
n be orthogonal projection along the vector w onto a hyperplane of dimension

(n − 1).

THEOREM. Let E ⊂ R
n be the generalized ellipsoid defined by

x2
1

a2
1

+ x2
2

a2
2

+ · · · + x2
n

a2
n

= 1,

and let the vector v = 〈v1, v2, . . . , vn〉 belong to E . Then the projection πv(E) of this
ellipsoid has volume

Un−1

‖v‖ a1a2 · · · an .

Proof. Note that E is a level surface for the real-valued function f (x1, x2, . . . , xn) =
x2

1/a2
1 + x2

2/a2
2 + · · · + x2

n/a2
n . Hence the gradient ∇ f when evaluated at a point of

E is normal to E at that point. So the points of E satisfying the equation ∇ f · v = 0
are precisely those points for which v is a tangent vector. Collectively, these points
of tangency form what we will call the terminator ellipsoid ET . We note that ET

is indeed an ellipsoid of dimension n − 1, since the equation ∇ f · v = (v1/a2
1)x1 +

(v2/a2
2)x2 + · · · + (vn/a2

n)xn = 0 is that of a hyperplane, and the intersection of any
generalized ellipsoid in R

n and any n − 1 dimensional subspace of R
n is always an

ellipsoid of dimension n − 1. In FIGURE 3 the terminator ellipse is drawn with a heavy
black line in each of the first two frames.

We seek the volume of the projection πv(E). Our first observation is that the bound-
ary of this projection is πv(ET ), and hence the volume we seek is that of the ellipsoid
πv(ET ). We denote this ellipsoid by E , and note that in FIGURE 3 the ellipse E is
drawn with a thin black line in the middle frame.

Consider again the hyperplane containing the terminator ellipsoid ET . This hyper-
plane has normal vector N = 〈v1/a2

1 , v2/a2
2 , . . . , vn/a2

n〉. Since v belongs to E , at least
one vi �= 0, so we may suppose without loss of generality that vn �= 0. We solve for xn

in the hyperplane equation:

xn = −a2
n

vn

(
v1

a2
1

x1 + v2

a2
2

x2 + · · · + vn−1

a2
n−1

xn−1

)
.

One more ellipsoid is needed for our calculation: the vertical projection of the termi-
nator ellipsoid, π〈0,...,0,1〉(ET ), which we will call the horizontal ellipsoid EH . It can be
obtained by substituting the above expression for xn into the equation of the ellipsoid
E . Essentially we just eliminate the variable xn and obtain

x2
1

a2
1

+ x2
2

a2
2

+ · · · + x2
n−1

a2
n−1

+
(

an

vn

(
v1

a2
1

x1 + v2

a2
2

x2 + · · · + vn−1

a2
n−1

xn−1

))2

= 1 (1)

Writing r = (an/vn)〈v1/a2
1, . . . , vn−1/a2

n−1〉 and x = 〈x1, . . . , xn−1〉, and regarding
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vectors as matrices with one row, we have(
an

vn

(
v1

a2
1

x1 + v2

a2
2

x2 + · · · + vn−1

a2
n−1

xn−1

))2

= (x · r)2 = (x rT )(x rT )T

= x(rT r)xT .

Thus we may express equation 1 for EH as the quadratic form equation

x

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

1
a2

1
0 · · · 0

0 1
a2

2
· · · 0

...
...

. . .
...

0 0 · · · 1
a2

n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ rT r

⎞
⎟⎟⎟⎟⎟⎟⎠

xT = 1.

Note that this matrix, M , has the form of the matrix in the lemma, and hence we have

Det(M) = 1

a2
1 · · · a2

n−1

(
1 +

(
an

vn

)2 (
v2

1

a2
1

+ · · · + v2
n−1

a2
n−1

))

= 1

a2
1 · · · a2

n−1

(
1 +

(
an

vn

)2 (
1 − v2

n

a2
n

))

= 1

a2
1 · · · a2

n−1

(
an

vn

)2

.

We conclude that the volume of the horizontal ellipsoid EH is

Un−1√
Det(M)

= Un−1a1a2 · · · an−1
|vn|
an

.

Knowledge of the volume of EH = π〈0,...,0,1〉(ET ) allows us to find our ultimate goal,
the volume of ellipsoid E = πv(ET ), for both are projections of ET . The idea is that
projecting a figure scales its measure by the cosine of a certain angle. This is most
easily seen in R

3, where projecting a figure in one plane orthogonally onto a second
plane scales the area by the cosine of the dihedral angle between the two planes. This
same idea works in R

n . In particular we can relate the volumes of ET , EH , and E ,
using the known volume of EH to find the other two.

Since the projection π〈0,... ,0,1〉 maps the terminator ellipsoid ET onto the horizon-
tal ellipsoid EH , we consider the angle between their respective hyperplanes. The
acute angle between the horizontal hyperplane xn = 0 and the hyperplane of the ter-
minator ellipsoid is the same as the angle between their normal vectors, provided
this angle is acute. The normal vectors can be chosen as 〈0, . . . , 0, ±1〉 and N =
〈v1/a2

1 , v2/a2
2, . . . , vn/a2

n〉, where the sign in the first vector is chosen to match the
sign of vn , thus making the angle between them acute. Using the dot product, we find
the cosine of this angle is

|vn|
a2

n ‖N‖ .

Similarly, the projection πv maps the terminator ellipsoid ET to the ellipsoid E . The
acute angle between their respective hyperplanes is the angle between N and v. Its
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Figure 4 In two dimensions, the ellipses EH and E shown as projections of the terminator
ellipse ET .

cosine is given by

v2
1/a2

1 + v2
2/a2

2 + · · · + v2
n/a2

n

‖v‖ ‖N‖ = 1

‖v‖ ‖N‖
since v is a member of E . Putting this all together, we see that the volume of the
ellipsoid E is the volume of EH multiplied by the ratio of the cosines, which is

(
Un−1a1a2 · · · an−1

|vn|
an

)(
a2

n

|vn| ‖v‖
)

= Un−1

‖v‖ a1a2 · · · an .

Ellipsoidal bodies

Consider the ellipsoidal body E with equation x2/a2 + y2/b2 + z2/c2 = 1, moving
as before in the positive x direction a distance of one unit with speed s, and with
rain vector vr = 〈wt , wc, −l〉. The apparent rain vector is as before: v = vr − vm =
〈wt − s, wc, −l〉. The measure of total wetness T as a function of s is the volume of
the rain region, that is, the volume of the region containing the rain that will strike our
ellipsoidal hero in the course of his journey. Specifically, it is the volume of the right
cylinder whose base is the the projection πv(E) and whose height is ‖v‖ /s. To find the
area of the base, we use our THEOREM, but take into account the fact that v may not
lie on E . Toward this end, choose k > 0 so that

k2 = (wt − s)2

a2
+ w2

c

b2
+ l2

c2
.

Then v/k lies on E . So by the theorem, the area of the projection πv(E) is

U2

‖v/k‖a b c = k π

‖v‖a b c

We multiply this area by the height of the cylinder to get volume
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T (s) =
(

k π

‖v‖a b c

)(‖v‖
s

)
= π

s
k a b c = π

s

√
k2a2b2c2

= π

s

√
b2c2(wt − s)2 + a2c2w2

c + a2b2l2.

This formula reduces to that found earlier for spherical bodies when a = b = c. It is
readily verified that this total wetness function T has a limiting value of πbc (the area
of the projection of the ellipsoid onto the yz plane) as s → ∞, is strictly decreasing
on (0, ∞) when wt ≤ 0 (no tail-wind), and that it has an absolute minimum at its lone
critical point

sopt = b2c2w2
t + a2c2w2

c + a2b2l2

b2c2wt

when wt > 0 (tail-wind present). This optimal speed is again strictly greater than the
speed wt of the tail-wind. Moreover, if the traveler becomes very skinny from back to
front (a → 0), the optimal speed approaches wt .

For example, consider an ellipsoid of roughly human proportions, with a = 1,
b = 2, and c = 6 (units are not important; it is only the relative dimensions that are
relevant). And imagine rain conditions where the vertical downward rainfall speed
is l = 12 mph, with a tail-wind wt = 5 mph and a cross-wind wc = 5 mph. In this
case the total wetness measure T (s) is minimized when the body moves at a speed of
s = 7.05 mph, well above the speed of the tail-wind! (See the FIGURE 5, where the
wetness at speeds s = 5 and 7.05 are highlighted).

5 7.05
s

20.3
24.1

12π

T

Figure 5 With a 5 mph tail-wind, this elliptical body stays driest by traveling at approx-
imately 7 mph. The MAGAZINE website hosts a dynamic version of the figure.

Moreover, it is definitely advantageous to the body to move at this speed rather than
the speed of the tail-wind; in this example the body gets roughly 19% wetter when
moving at the speed of the tail-wind instead of the optimal speed. This unexpected
result is contrary to that predicted by the rectangular solid model, where total wetness
is minimized when the body moves precisely at the speed of the tail-wind (provided
the tail-wind is sufficiently strong, as it is in this example).

For an ellipsoidal traveler moving in tail-wind conditions, then, there are three travel
speeds worthy of our attention: the speed wt of the tail-wind, the optimal speed sopt,
and the traveler’s top running speed, which we will denote by smax. Suppose that con-
ditions are such that 0 < wt < smax. We now investigate how much wetter a wandering
ellipsoid can possibly get by traveling at the less-than-ideal speeds wt or smax than he
would get by proceeding at the optimal pace.
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The example above suggests that one can get roughly 20% wetter by traveling at
the speed wt of the tail-wind. Moreover, these are in conditions where the rectangular
solid model recommends that the traveler move at precisely the speed of the tail-wind.
Under the body dimensions considered above, and under the constraints that our hero
walk no more slowly than human walking speed (say 3 mph) and that the weather
conditions favor having a box-shaped body optimally travel at the speed of the tail-
wind, this value of 20% is near the upper limit on how much wetter an ellipsoid will
get by slowing to the speed of the tail wind versus traveling at the faster optimal pace.

Under these conditions, however, our mathematician would get only slightly wetter
by running flat-out than he would by hitting the optimal tempo. In the previous ex-
ample, for instance, running at 9 mph (a brisk pace to sustain in slippery conditions)
gets him a little over 5% wetter than moving at the best pace. Will this always be the
case, or are there atmospheric conditions when moving at the optimal pace keeps an
ellipsoid significantly drier than running flat-out? To investigate this, consider the ratio

R = T (smax)

T (sopt)
.

This ratio measures how much wetter a running body will get than a body traveling at
the optimal pace. In the case of either ellipsoidal or cereal-box-shaped travelers, it is
a simple matter to deduce that this ratio is maximized when the cross-wind wc = 0.
In other words, the traveler is moving precisely in the direction of the wind. Equiv-
alently, we need only consider a two-dimensional model. In the case of an elliptical
traveler with semi-axes a and c moving when there is a tail-wind at speed w, it is
straightforward to calculate

R =
√

(a2l2 + c2w2)(a2l2 + c2(smax − w)2)

a c l smax
.

Noting that the numerator is symmetric in w and smax − w, it is a simple matter to
deduce that R attains its maximum precisely when

w = smax

2

where it attains a maximum value of

Rmax = al

csmax
+ csmax

4al
.

In other words, the wind conditions under which an elliptical traveler will pay the
highest price for running flat-out as opposed to moving at the optimal pace is when the
tail-wind speed is exactly half the traveler’s top running speed. A similar calculation
for rectangular travelers was carried out by Schwartz and Deakin [10]. If one then
substitutes the human-like values a = 1 and c = 6, and uses a top running speed smax =
9 mph and a vertical rainfall velocity l = 12 mph, one finds that in the worst case (a
4.5 mph tail-wind), R is approximately 1.34. That is, our elliptical traveler cannot
get more than 34% wetter when running as opposed to traveling at the optimal pace.
Traveling at the optimal pace, therefore, can keep him much drier than running. We
note that the ratio R is sensitive to changes in both smax and l. The ratio will be even
higher in light rain conditions (small l), and will be also be higher for faster runners.

Using these same relative dimensions in the case of a rectangular traveler, how-
ever, and using the formula for this ratio provided by Schwartz and Deakin [10], the
maximal ratio is approximately 1.8. In both cases the body stays significantly drier by
moving at the optimal pace appropriate for his body shape. But the penalty for running
flat-out is greater for boxes than for ellipsoids!
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Keeping dry

Before addressing the subtleties suggested by these models, it is important to under-
stand that all of this only applies to relatively short stints in the rain. One can only get
so wet before being saturated, so that additional rain just runs off. (In this instance, the
mathematician is said to be all wet.) Furthermore, if one walks in the rain when winds
are light, or moves near the speed of a tail-wind, one’s head takes most of the water
(unless there is a calculus book on top of it), and eventually it will drip down to the
face and body. Our models don’t take this redistribution of water into account—again:
short stints in the rain.

In the absence of a tail-wind, regardless of body shape, one stays driest by travel-
ing as quickly as possible. With a tail-wind, the ellipsoidal model suggests traveling
slightly faster than the speed of the tail-wind, as if to outrun the rain. This differs from
the rectangular solid analysis, which suggests that the body move at the same speed as
the tail-wind (or move as fast as possible if the cross-wind is sufficiently high or the
tail-wind sufficiently weak). Our first conclusion, then, is simply that shape matters.
Moreover, in the case of an ellipsoidal traveler, small perturbations to the lengths of the
axes of the ellipsoid will change the optimal speed of travel (for rectangular solids in
strong tail-wind conditions, the optimal pace is simply the speed of the tail-wind, and
so is immune to any changes in the dimensions of the traveler). Again, the ellipsoidal
model reveals the simple truth that shape matters.

But in practical terms, the models considered here suggest that conditions where
traveling at some optimal speed (related to the speed of a tail-wind) will keep one
significantly drier than running at full speed are rare. In particular, a tail-wind must
exist but be about half of one’s top running speed, and the cross-wind must be minimal
for this effect to be apparent. However, in these ideal conditions both the rectangular
and ellipsoidal models suggest that a traveler will stay significantly drier by moving at
the optimal pace, especially in a light rain.

Our recommendation, therefore, is to RUN in the rain unless you find yourself trav-
eling in the perfect storm—where the tail-wind is half your top running speed, the
cross-wind is minimal, and the rainfall is light. In such conditions, given the rounded
features of the human body, it might make sense to dampen your pace (so to speak)
from a run down to a speed that is just a bit faster than that of the tail-wind.
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