Soggy Jogging in Flatland:
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ave you ever been caught out in

the rain and wondered whether

to run or walk? In an all out
downpour, there doesn’t seem to be
much question. You will be totally
soaked in very short order, so the
natural inclination is to reach shelter as
fast as you can. But in a lighter rain it is
not so obvious. If you go faster, maybe

you sweep up more rain with your front.

Is it possible to stay drier by going
slower?

We want to share a beautiful geometric
analysis of this situation that dispels
the clouds of doubt and shines bright
sunshine on the question. The geome-
try is so compelling that you will agree
immediately: in most conditions the
best strategy is to run at full speed.
But we do need a few assumptions,
naturally, and to simplify the story we
shall take a field trip to Flatland and
investigate two dimensional running in
the rain.

So consider Mr. Pictogram, pictured in
Figure 1, traveling through Flatland in a

Figure 1. Mr. Pictogram jogs in the rain.

In some cases, the logic of matching your pace to the
wind just doesn’t hold water.

light rain. Let’s assume that the rain is
falling steadily at a constant rate and in
a constant vertical direction. If you
could freeze time at one instant, the air
would be full of individual raindrops.
We will assume that they are of equal
size and uniformly distributed. That
means that the total amount of water in
any region is proportional to the area of
the region.

Say we freeze time at the instant Mr.
Pictogram begins his trip. Visualize him
starting off, surrounded by raindrops,
suspended motionless. Let’s color all
the raindrops that will eventually fall on
him as he moves forward. These
colored drops occupy a region of the
plane that we shall call the rain region.
By our earlier observation, the total
amount of water in the rain region is
proportional to its area. And that is the
amount of water that will fall on Mr. P.

As we shall see, the size and
shape of the rain region
depend on how fast Mr. P

‘ moves. At a casual stroll, Mr.

P might have a rain region of area S.
Traveling at a brisk jog Mr. P will have a
different rain region J. If the area of J is
twice as large as the area of S, then Mr.
P will collide with twice as much water
when jogging as when strolling. In gen-
eral, we can compare different ways to
move through the rain by comparing
the areas of the corresponding rain
regions.

Shapes of Rain Regions

To get a feel for the nature of rain
regions, it helps to consider a couple of
extreme cases. First, suppose Mr. P
travels at super speed—so fast that he
reaches shelter before the rain drops
have a chance to fall at all. In this case,
the rain region stretches out in front of
him, as shown in Figure 2. Mr. P
sweeps out all the rain drops suspend-
ed in his path for how ever far he runs.
In this case we find the rain region by
sweeping Mr. P horizontally.

At the opposite extreme, Mr. P doesn’t
move at all. He runs so slowly that he is
effectively standing still. In this case,

Figure 2. Rain region when Mr. P runs at super speed.
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the rain region extends directly above
him, as shown in Figure 3. The height
of the region
depends on how
long Mr. P remains
standing there. For
a fixed amount of
time, the rain
region will extend
a fixed distance
vertically, as
illustrated. Here
we find the rain
region by sweep-
ing Mr. P vertically.
These two extreme
cases help us see
what the rain
region looks like
traveling at an
intermediate
speed. The rain

Figure 3. Rain region when Mr. P
stands still.

drops immediately above Mr. P fall on
him at the start of his trip. But
raindrops slightly higher initially will be
the ones that hit him a little later in the
trip. As he moves forward and time
passes, the raindrops he encounters
have fallen for progressively longer
periods from their initial positions. In
this case the rain region is found by
sweeping Mr. P at an angle, as shown
in Figure 4. The slope of the angle

depends on Mr. P’s
speed and the speed
at which the rain is
falling. If Mr. P goes
super fast, then the
slope is 0. If he goes
infinitely slowly, the
slope is infinite. If he
goes at exactly the
speed of the rain’s
descent, the slope is
1. In general, we

sweep out the rain
region at an angle w
whose tangent is the
ratio of the rain’s rate
of descent to Mr. P’s
rate of travel.

Minimizing Exposure to
the Rain

Now let’s use the idea of rain regions to
analyze Mr. P’s options. In Figure 5 Mr.
P is shown running a distance d. To
simplify the geometry he is idealized to
a rectangular shape of height 4 and
width w. The rain region, swept out at
an angle a that depends on P’s speed,
can thus be decomposed into two
parallelograms. The more lightly
shaded parallelogram holds all the rain
drops that will collide with Mr. P’s front.
The area of that part is hd and is
independent of the angle a.. The darker
parallelogram holds all the water that
will fall on Mr. P’s top. A routine
application of
trigonometry shows
that this part of the
rain region has area
wd tan «. To mini-
mize the area of the
entire rain region,
Mr. P should go as
fast as possible
because that will
minimize tan o.
Notice that the
limiting cases are
consistent with
these conclusions.
At infinite speed, a

Figure 4. Rain region when Mr. P travels at a normal rate.

d

Figure 5. Decomposed rain region.

is zero. Mr. P will sweep out all the rain
in front of him, but not a drop will fall on
him from above. In this case the area of
the darker parallelogram is 0, as the
formula wd tan a predicts. At the other
extreme, when Mr. P stands still, « is
7/2, so tan a goes to infinity. This time
both the geometry and the formula
indicate an infinite rain region.

The Vexing Tail Wind and
Mr. Circle

Things get more interesting if we adjust
one of our assumptions and allow the
wind to blow. To keep it simple, let’s
assume that there are no gusts. The
steady wind causes the rain to fall at a
fixed angle. What happens if, as before,
Mr. P moves in the positive x direction,
but now there is a tail wind? Historically
this situation has proved vexing, and
the mathematical and meteorological
literature is sprinkled with assertions,
retractions, and corrections. In the
October, 2009 issue of Mathematics
Magazine we have an article titled
“Keeping Dry: The Mathematics of
Running in the Rain,” which explores
the mathematical history of this topic in
some depth. The conventional wisdom
is that Mr. P is best served by traveling
at the precise speed of the horizontal
component of the tail wind, for in this
situation the apparent rain direction is
vertical and so the rain region lies
directly overhead. For a rectangular
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traveler, and for a sufficiently strong tail
wind, the speed of the tail wind is
indeed the optimal pace. Why, you may
wonder, must the tail wind be
sufficiently strong? Well, consider an
extreme case: in a tail wind of, say, one
inch per hour, Mr. P would have to get
wetter crawling like a tortoise than
running like a hare simply because he
would be exposed to the elements
hundreds of times longer. In fact, in the
ultimate extreme case, with a tail wind
of 0, the logic of matching your pace to
the wind just doesn’t hold water.

So Mr. P should only keep pace with
the wind if it is going sufficiently fast.
And how fast might that be? The
answer can be worked out exactly, as
shown in several of the references to
our Mathematics Magazine article.

More surprising to us was the discov-
ery that the shape of the traveler is
paramount in these calculations. To
illustrate this idea, consider Mr. Circle,
a solid citizen in Flatland, always ready
to do a good turn. He is special
because his rain region always has the
same shape: a rectangle with half a
circle cut out of one end and pasted
onto the other (see Figure 6).

This means the area of the rain region,
regardless of his speed or the speed of
the tail wind, is always equal to the area
of a rectangle of width 2r, where r is
the radius of Mr. C. The length of the
rectangle depends on his speed, the
wind speed, and how far he travels. For
the purpose of illustration, suppose he
moves one unit in the positive x
direction at a speed of s units per
second. The duration of his trip is then
1/s seconds. Now suppose that there is
a 5 unit per second tail wind and that
the rain is falling with a vertical velocity
component of 3 units per second. Then
in 1/s seconds, a drop of rain will travel
along the vector (5/s, =3/s). At the same
time, Mr. C travels along the vector
(1,0). So, from Mr. C’s perspective, the
rain appears to be traveling along the
apparent rain vector (5/s -1, =3/s).

L d

Figure 6. Mr. Circle’s rain region can be thought of as a rectangle.

Since the rain region is exactly as long
as this vector and is 2r units wide, it

has area
2ry(5 = s)* + 3

N

We would like to minimize this as a
function of s. Differentiation with
respect to s reveals exactly one critical
point, at which the area of the rain
region is minimal: s = (52 + 32)/5 = 6.8.
Note that this is faster than the 5 unit
per second tail wind!

Generalizing to a tail wind of w units
per second and rain falling with a
vertical velocity component of v units
per second, a similar analysis shows
that Mr. C’s optimal speed is

s = W2 +v3)/w, and since v > 0, that
always exceeds w, the speed of the tail
wind. This means that for Mr. Circle,
traveling a bit faster than the speed of

the tail wind will always keep him driest.

Rectangular travelers moving with a tail
wind, by contrast, are best served by
either running full speed (if the wind is
weak) or by traveling at precisely the
speed of the tail wind (if it is sufficiently
strong). There is no getting around the
fact that shape matters!

Back to the Real World

The adventures of Messers P and C are
all well and good, but what lesson do
they hold for those of us who don’t live
in Flatland? The ideas that govern
running in Flatland all extend in a
natural way to three dimensions. Rain
regions, wind directions, tail winds, and
runner shapes all play a role, with the
additional consideration of the effect of
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a cross wind. The complete story can
be found in our Mathematics Magazine
article. As is the case in Flatland,
running hard is often best. But under
some very special circumstances the
optimal strategy to stay as dry as
possible is not to run at full speed.
Given the right combination of tail and
cross winds, you can actually do a little
better at something less than your
fastest possible pace.

An interactive demonstration, in which
wind conditions and the shape of a
three-dimensional traveler can be
manipulated in real time, is available for
download at www.maa.org/mathhori-

zons/supplemental .htm. B
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