Polynomia Pasttimes

Activities and Diversions from the

Dan-Kalman:

American University

www.dankalman.net/mathfest11

Reminder: What's a polynomial?

$$
\begin{gathered}
5 x^{3}-7 x^{2}+3 x-2 \\
15 x^{2}-14 x+3 \\
5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
\end{gathered}
$$

Polynomials have ROOTS

$$
\begin{gathered}
5 x^{3}-7 x^{2}+3 x-1=0 \\
x=1
\end{gathered}
$$

Roots are related to Factors

$$
\begin{gathered}
5 x^{3}-7 x^{2}+3 x-1=(x-1)\left(5 x^{2}-2 x+1\right) \\
\text { Complete factorization } \ldots
\end{gathered}
$$

$$
\begin{aligned}
5 x^{3}-7 x^{2}+3 x-1 & =(x-1)\left(x-\frac{2+\sqrt{-16}}{10}\right)\left(x-\frac{2-\sqrt{-16}}{10}\right) \\
& =(x-1)(x-.2-.4 i)(x-.2+.4 i)
\end{aligned}
$$

Finding Roots is Hard ...

... But we can find out some things easily

$$
p(x)=5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
$$

- The sum of the roots is $11 / 5$
- The average of the roots is $11 / 20$
- The sum of the reciprocals of the roots is $7 / 3$
- We'll get back to roots in a bit First let's look at computation
- Can you compute $p(3)$ in your head?

Horner's Form

- Standard descending form

$$
p(x)=5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
$$

- Horner form

$$
p(x)=(((5 x-11) x+6) x+7) x-3
$$

- Also referred to as partially factored or nested form

Derivation of Horner Form

$$
\begin{aligned}
p(x) & =5 x^{4}-11 x^{3}+6 x^{2}+7 x-3 \\
& =\left(5 x^{3}-11 x^{2}+6 x+7\right) x-3 \\
& =\left(\left(5 x^{2}-11 x+6\right) x+7\right) x-3 \\
& =(((5 x-11) x+6) x+7) x-3
\end{aligned}
$$

Quick Evaluation

- Compute $p(2)$: $(((5 \cdot 2-11) 2+6) 2+7) 2-3$
- Answer = 27
- Compute p(3): $(((5 \cdot 3-11) 3+6) 3+7) 3-3$
- Answer = 180
- Compute $p(2 / 5)$: (((5•\# - 11) \# + 6) \# + 7) \# - 3
- Answer = 23/125?

Getting Back to our Roots

Coefficients and combinations of roots

Product of Roots

Constant term / highest degree coefficient
Example:

$$
p(x)=5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
$$

Product of the roots is ...

$$
-3 / 5
$$

Key Idea of Proof

- For our example

$$
p(x)=5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
$$

- Say the roots are r, s, t, and u.
- $p(x)=5(x-r)(x-s)(x-t)(x-u)$
- Multiply this out to find the constant term $5 r s t u=-3$

Sum of Roots

$-2^{\text {nd }}$ highest degree coefficient divided by highest degree coefficient

Example:

$$
p(x)=5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
$$

Sum of the roots is ...
11/5
Average of the roots is ...
11/20

Exercises

1. Prove the sum of the roots result
2. Prove this: For any polynomial p, the average of the roots of p is equal to the average of the roots of the derivative p^{\prime}.

Reverse Polynomial

- Consider the polynomial

$$
p(x)=x^{6}-7 x^{5}+11 x^{4}+13 x^{3}-5 x^{2}+2 x+1
$$

- The reverse polynomial is

$$
\operatorname{Rev} p(x)=1-7 x+11 x^{2}+13 x^{3}-5 x^{4}+2 x^{5}+x^{6}
$$

- Question: How are the roots of Rev p related to the roots of p ?
- Answer: Roots of reverse polynomial are reciprocals of roots of the original.

Sum of Reciprocal Roots

$-1^{\text {st }}$ degree coefficient divided by the constant coefficient

Example:

$$
p(x)=5 x^{4}-11 x^{3}+6 x^{2}+7 x-3
$$

Sum of the reciprocal roots is ...
7/3

Average of the reciprocal roots is ...
7/12

Exercises

1. Prove this: For any polynomial p of degree n with nonzero constant term,

$$
\operatorname{Rev} p(x)=x^{n} p(1 / x) .
$$

2. Use 1 to prove that the roots of $\operatorname{Rev} p(x)$ are the reciprocals of the roots of $p(x)$.
3. Use 2 to prove: if

$$
p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

and $a_{0} \neq 0$, then the sum of the reciprocals of the roots of p is $-a_{1} / a_{0}$

Polynomial Long Division

- Example: $\left(x^{2}-5 x+6\right) \div(x-3)$
- Redo the example working from the constants upward
- Another example: $\left(x^{2}-5 x+6\right) \div(x-1)$
- Answer $-6-x-2 x^{2}-2 x^{3}-2 x^{4}-2 x^{5}-\cdots$
- Similar to the long division $1 \div 3$ to find $.333333 \ldots$
- Alternate form of answer:

$$
-6-x-2 x^{2}\left(1+x+x^{2}+x^{3} \ldots\right)=-6-x-2 x^{2} /(1-x)
$$

- Similar to mixed fraction form of answer to a division problem.

Amazing Application

- Start with $p(x)=x^{3}-2 x^{2}-x+2$
- Find the derivative (Do it on overhead)
- Reverse both (Do it on overhead)
- Do a long division problem of the reversed $p(x)$ into the reversed $p^{\prime}(x)$, working from the constants forward
(Do it on overhead)
- The coefficients have an astonishing interpretation: sums of powers of roots

Checking the answer

- $p(x)=x^{3}-2 x^{2}-x+2=(x-2)\left(x^{2}-1\right)$
- Roots are 2, 1, and -1
- Sum of roots = 2
- Sum of squares of roots $=6$
- Sum of cubes = 8
- Sum of fourth powers $=18$
- Etc.

Proof Hints

- $\operatorname{Rev} p(x)=x^{n} p(1 / x)$
- Logarithmic Derivative: $f^{\prime} / f=(\ln f)^{\prime}$
- If $f(x)=(x-r)(x-s)(x-t) \cdots$ then

$$
(\ln f(x))^{\prime}=\frac{1}{x-r}+\frac{1}{x-s}+\frac{1}{x-t}+\cdots
$$

- Geometric Series:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots \text { and } \frac{1}{x-a}=\frac{-1 / a}{1-x / a}
$$

Palindromials

- $p(x)=$ reverse $p(x)$
- Example: $x^{4}+7 x^{3}-2 x^{2}+7 x+1$
- 1 and -1 are not roots, so roots come in reciprocal pairs
- Must factor as (x-r)(x-1/r)(x-s)(x-1/s)
- Rewrite: $\left(x^{2}-u x+1\right)\left(x^{2}-v x+1\right)$
where $u=r+1 / r$ and $v=s+1 / s$

Matching Coefficients

- $\left(x^{2}-u x+1\right)\left(x^{2}-v x+1\right)=x^{4}+7 x^{3}-2 x^{2}+7 x+1$
- $u+v=-7$ and $u v+2=-2$
- Two unknowns. Sum $=-7$, product $=-4$
- They are the roots of $x^{2}+7 x-4=0$
- u and v are given by $\frac{-7 \pm \sqrt{65}}{2}$
- Our factorization is

$$
\left(x^{2}-\frac{-7+\sqrt{65}}{2} x+1\right)\left(x^{2}-\frac{-7-\sqrt{65}}{2} x+1\right)
$$

Solve for x

$$
\left(x^{2}-\frac{-7+\sqrt{65}}{2} x+1\right)\left(x^{2}-\frac{-7-\sqrt{65}}{2} x+1\right)=0
$$

- Use quadratic formula on each factor
- Roots from first factor are

$$
\frac{1}{2}\left(\frac{-7+\sqrt{65}}{2} \pm \sqrt{\frac{98-14 \sqrt{65}}{4}}\right)=\frac{1}{4}(-7+\sqrt{65} \pm \sqrt{98-14 \sqrt{65}})
$$

- Remaining roots are

$$
\frac{1}{4}(-7-\sqrt{65} \pm \sqrt{98-14 \sqrt{65}})
$$

General Reduction Method

- $p(x)=a x^{6}+b x^{5}+c x^{4}+d x^{3}+c x^{2}+b x+a$
- $p(x)=x^{3}\left(a x^{3}+b x^{2}+c x+d+c x^{-1}+b x^{-2}+a x^{-3}\right)$
- $p(x) / x^{3}=a\left(x^{3}+1 / x^{3}\right)+b\left(x^{2}+1 / x^{2}\right)+c(x+1 / x)+d$
- We want roots of $a\left(x^{3}+1 / x^{3}\right)+b\left(x^{2}+1 / x^{2}\right)+c(x+1 / x)+d$
- Almost a polynomial in $u=(x+1 / x)$.
- $u^{2}=x^{2}+2+1 / x^{2} \rightarrow x^{2}+1 / x^{2}=u^{2}-2$
- $u^{3}=x^{3}+3 x+3 / x+1 / x^{3}=x^{3}+3 u+1 / x^{3}$ $\rightarrow x^{3}+1 / x^{3}=u^{3}-3 u$
- Leads to a cubic polynomial in u :

$$
a\left(u^{3}-3 u\right)+b\left(u^{2}-2\right)+c(u)+d
$$

Example

$x^{8}+3 x^{7}-6 x^{6}+12 x^{5}-13 x^{4}+12 x^{3}-6 x^{2}+3 x+1=0$

- Make the standard reduction

$$
u^{4}+3 u^{3}-10 u^{2}+3 u+1=0
$$

- It's another palindromial! Reduce again

$$
v^{2}+3 v-12=0
$$

- Solve with quadratic formula $v=\frac{-3 \pm \sqrt{57}}{2}$
- Find u : $v=u+1 / u$ so $u^{2}-v u+1=0$
- Solve for u

$$
u=\frac{-3-\sqrt{57} \pm \sqrt{50+6 \sqrt{57}}}{4}
$$

Solve for x

- We have found 4 values for u
- We know $x+1 / x=u$
- Solve $x^{2}-u x+1=0$ with quadratic formula for each known u value
- That gives 8 roots
- Here is one:
$\frac{-3-\sqrt{57}+\sqrt{50+6 \sqrt{57}}+i \sqrt{(6+2 \sqrt{57}) \sqrt{50+6 \sqrt{57}}-52-12 \sqrt{57}}}{8}$

