UME Solutions

Chapter 5.

1. a. The equations g(x,y,z) = 0 and Vf(x,y,2) = AVyg(z,y, 2)
define a system

Pyt =1
2 = 2\
3 = 2y
-4 = 2)\z.

Multiplying the first equation by A? and squaring the re-
maining equations produces

Na®+ NyP+ N = N

1 = A\2?
9/4 = \%?
4 = )22

Combining all these equations we find
14+9/4+4 =\

and that tells us
A= +v29/2.
At last, we solve for the remaining variables, finding

1
(x,y,2) = j:\/—2_9(2, 3,—4).

That is, when A = v/29/2 we must take (z,y,2) = (1/v/29)(2,3, —4)
and when A = —/29/2 we must take (2,7, z) = (1/v/29)(—2, —3,4).

b. We want to find (z,y, z, A) so that

or = 242\ =0

Ox

F

or = 3+2\y=0

oy

F

or = 442 z=0

0z

F

g—)\ = 2+ +22-1=0.
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After rearrangement, these are essentially the same as the
equations from part a., except that A has been replaced by
—A. Using similar methods as before, the solution is found
to be

1 29
T, Y, 2, \) =+t—=12,3,—4,—— ).
(20 =75 ))

c. The solutions have identical values of z, y, and z, and oppo-
site values of \.

2. Let g(x,y) = y so S is the curve y = 0, aka the = axis. Let
f(x,y) = y — 23 and take M = 0 so that the level curve L has
equation y = z®. This is evidently tangent to S at (0,0), which
we take to be point p. Clearly L and S cross at p. This implies
that p is not a local minimum or maximum of f restricted to
the constraint curve S. To see this explicitly, observe that on S
f(x,y) = f(x,0) = —2* and that takes on values greater than
f(p) = 0 to the left of p and less than f(p) to the right of p.
However, we can easily verify that p satisfies the Lagrange con-
ditions. It certainly satisfies the equation g(x,y) = 0. And since
V£(0,0) = (0,1) = Vg(0,0), the gradients are parallel at (0,0).
Thus we have shown in this example that a solution of the La-
grange conditions need not be either a local constrained maximum
or minimum of f. More generally, this illustrates that Lagrange
conditions are necessary, but not sufficient, for identifying local
constrained maxima and minima.

3. Define f(x,y,2) = 22 +y?> + 2% and g(x,y,z) = xyz — 1. On the
constraint surface ¢g(z,y,2) = 0 we observe that neither x nor
y can vanish, and that z = 1/xy. Therefore, define ®(z,y) =
(x,y,1/zy), so that the restriction of f to the constraint surface
can be identified with f o ®.

Now compute

1 0

dd = 0 1
=1 =1

2y g

and notice that the columns are linearly independent. That is,
they cannot be multiples of one another because no multiple of
(1,0) equals (0,1).

Now suppose (z*, y*, 2*) is the location of a constrained maximum
or minimum of f. Then z* = 1/x*y*, and f o ® has a local max
or min at (z*,y*). Thus, its gradient is equal to 0 there. But

V(f © (I))(l‘*,y*) = (Vf(x*,y*,z*))T ’ dq)(l‘*ay*)
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so V f(z*,y*, 2*) is orthogonal to the columns of d®(z*, y*). Geo-
metrically, V f(z*, y*, 2*) is perpendicular to the plane containing
the columns of d®(z*, y*). By similar reasoning, since go® is con-
stant, its gradient also vanishes, and that implies Vg(z*, y*, 2*)
is also perpendicular to the same plane. Together, these observa-
tions imply that V f(z*, y*, 2*) and Vg(z*, y*, 2*) are parallel.

. The Lagrangian function in this example is F'(z,y,\) = 22 + 3>+
A(zy—1), and the solution to the constrained optimization occurs
where (z,y,\) = (1,1,—2). At that point we know that VF is
zero. To apply the second derivative test we have to compute the
Hessian matrix of second partial derivatives

2 Ay 2 -2 1
H=| X2 z|=|-2 21
y x 0 1 10

To show that (1,1, —2) is a saddle point, it suffices to show that
there are both positive and negative eigenvalues. To that end, we
find the characteristic polynomial

t—-2 2 -1
p(t) = det 2 t—-2 -1
-1 -1 t

Before computing the determinant, we observe that setting t = 4
makes the first two rows identical. Thus p(4) = 0 revealing one
root of p (and a positive eigenvalue of H).

Proceeding, we expand the determinant formula for p(t) and di-
vide out a factor of (t—4). This leads to p(t) = (t—4)(t*—2), and
tells us that the eigenvalues of H are 4 and ++v/2. In particular,
H has both positive and negative eigenvalues, as desired.

. The n variable analog of the theorem is as follows.

Let f and g be functions of n variables, with continuous second
derivatives. Let F(xq, -+, 2y, \) = f(z1, -+, 20) +Ag(T1, -+, 2p).
Then, if (z7,---, 25, \*) is a critical point of F' at which Vg* is

not zero, F' has a saddle point at (xf,---, 2%, A*).

In the proof, we can again assume that (z},---,2%) = 0 and

’n

that Vg* points in the direction of the positive x; axis. Thus
Vg = (95, 9s ) =(a,0,0,---,0) for some a # 0.

Next we will consider the restriction of F' to the two dimensional
plane spanned by the vectors (1,0,0,---,0) and (0,0,---,0,1) in
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(x1,---,xn, A) space. This plane is characterized by the equations
zp=0for2<k<n-1.

Let

h(xz1,\) = F(x1,0,---,0,A) = f(x1,0,--+,0) + Ag(x1,0,---,0).
Then

Vh(z1,A) = (fo, (21,0, +,0) + Agy, (21,0, -+ +,0), g(x1,0,---,0)).

This vanishes at (z1,A\) = (0, A*), so (0, \*) is a critical point of
h.

We show that (0, \*) is a saddle point of i by using the second
derivative test for a function of two variables. To simplify the
notation we will use x in place of 1. We need the Hessian matrix
of second partial derivatives, which is defined by

] faa(®,0,04,0) + Aga (2,0, -+ +,0)  gu(2,0,---,0)
H(z,\) = 0 (2,0, -+ 0) ;

At the critical point, the determinant of the Hessian is det H (0, \*) =

—(g2)?> = —a?, and this is negative because we know a # 0.

Therefore, the second derivative test shows that h has a saddle
point at (0, A*). Hence F must have a saddle point at (x7,- -+, 25, \*),
as claimed.

6. a. Substituting the parameteric expressions for x and y changes
our problem to one of maximizing v/2(cost + sint) for 0 <
t < 2m. But that is the same as maximizing 2(y/1/2cost +
V/1/2sint) = 2sin(t + 7/4). By inspection the maximum
occurs when ¢ = 7/4 and that corresponds to the point
(z,y) = (1,1).

b. At the point (1,1) the directional derivative of F) in the
direction of the vector (—1,1) is given by

1/2(=1,1)-VFy(1,1) = v/1/2(=1,1) - (1+2X, 142)) = 0.

c. At the point (1,1) the directional derivative of F) in the
direction of the vector (1,1) is given by

V1/2(1,1)-VF\(1,1) = /1/2(1,1)-(142X, 142)) = V2(1+2)).
As required, this vanishes if and only if A = —1/2.
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d. Since F_ipp(z,y) = 2 +y — (2 +y* — 2)/2, we can com-
pute directly VF_y/5(x,y) = (1 — 2,1 —y). This shows that
(z,y) = (1,1) is a critical point of F_; 5

e. The results of the earlier parts of this problem show that in
the family of functions F), there is one for which (1,1) is a
critical point. For that value of A, the graph of F) has a hor-
izontal tangent plane at the point (1,1). This is also where
F is maximized subject to the given constraint, because F)
and f agree at each point of the constraint curve. Thus, this
example illustrates the idea of leveling: it is possible to level
the graph of f at the constrained optimum by adding the
perturbation (—1/2)g, and therefore it is possible to find a A
so that the Lagrange conditions hold at the solution point.
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UME Solutions

Chapter 6.

1. The slope of the line from (—a,a) to (6 —a,6 —a) is (6 —2a)/6 =
(3 —a)/3. The point slope formula then gives the equation of the

line as
3—a
y—a= (x + a),
3
or equivalently
3—a
3 (r+a)—y+a=0.
Therefore, we define
3—a
F.(x,y) = 3 (x+a) —y+a.

The equation F,(z,y) = 0 then defines our family of lines. Ap-
plying the envelope algorithm, we differentiate with respect to a

to find
0 -1 3—a 1 2
Tz, y) = — l=—2—~a+2.
5 (z,y) 3(x—|—a)+ 3 + 3x 3a+

Setting this to zero, we find that @ = —z/2 + 3. Substituting in
F,(z,y) = 0 now gives the equation

2
%(x—x/2+3)—y—x/2+3:0
for the envelope of the family of lines. Algebraic rearrangement
reduces this to y = 2/12 + 3 which is immediately recognized as
a parabola with vertex at (0,3) and axis of symmetry along the
Y axis.

2. The intercepts of the kth line are p, = (N —k,0) and ¢, = (0, k).
This tells us that the kth line has equation

x
N -k

Y
Z -1
%
or equivalently,
kx + (N —k)y = k(N — k).
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This defines a family of lines, with k£ playing the role of parameter,
and N held constant. To find the envelope we differentiate with
respect to k. That gives

r—y=N-—-2k

so on the envelope k = (N—x+y)/2. Then N—k = (N+z—y)/2.
Substituting these in the equation for the family of lines now
produces

2(IN—z+ylz+2(N+z-y)y=I[N—(z-y)][N+(z-y)

Now there are a couple of ways to proceed. Noticing the ap-
pearance of z + y and = — y, we can introduce a new set of
axes w and z by rotating the original axis through a 45° an-
gle. The equation for the envelope can be expressed relative to
the rotated axes using the substitutions z = (v + y)/v/2 and
w = (x —y)/v/2, and that leads to an equation in w and z that
is quadratic in one variable and linear in the other. This shows
that the envelope is a parabola. Alternatively, we can simply
expand the envelope equation in x and y and express it in the
form Az? + Bxy + Cy?+ Dz + Ey+ F = 0. This will necessarily
be a conic section, and the condition for it to be a parabola is
B? —4AC = 0.

. The solution to this problem is very similar to the preceding so-
lution, and the details are left to the reader.

. Take the origin at the intersection of the two lines. Express the
endpoints of an initial string as nonzero vectors u and v. Then
the endpoints of the next string will be (1 + a)u and (1 — 8)v
for some positive constants a and . Since endpoints are equally
spaced on each line, this shows that the end points of the kth line
are (1 4+ ka)u and (1 — kf)v.

At this point, it is possible to introduce coordinates for u and v
and proceed as in the earlier problems. However, the algebra gets
quite involved, and even with a computer algebra system, it can
be quite a chore to verify that the envelope is a parabola. It is
not difficult to see that the equation has to reduce to something
of the form Ax? + Bay + Cy? + Dx + Ey + F = 0, but verifying
that B? — 4AC = 0 is not necessarily trivial.

An alternative is to show that a configuration of the sort already
discussed can be linearly transformed into the current configura-
tion. This transformation carries the lines of one string art design
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to the lines of the other, and because linear transformations pre-
serve tangency, it also maps the envelope of the first design to
the envelope of the second. To complete this line of argument, we
need to know that a linear transformation always maps a parabola
to a parabola, a familiar result from analytic geometry.

So, to carry out this program, consider the points p, = (1+ak, 0)
on the z axis and ¢y = (0,1 — 8k) on the y axis. Using the sort of
analysis applied in the two preceding problems, we can show that
the envelope curve is of the form Az?+ Bay+Cy?*+Dx+Ey+F =
0 and that B? — 4AC = 0. In fact, I found that the envelope
equation reduces to something of the form

(Bx — ay)? = Dz + Ey + F.

These results show that the envelope of the string art design de-
fined by the points p; and g is indeed a parabola.

Now consider the linear transformation that takes an arbitrary
vector (z,y) to the vector zu+yv. In matrix notation, the trans-
formation is given by

r([3D)=x]3]

where M is the 2 x 2 matrix with columns u and v. Observe that
T(px) = (1 + ak)u and T(qx) = (1 — fk)v. This shows that T
carries the string art design we just analyzed onto the original
design for this problem. Therefore, in the original design, the
envelope is always a parabola.

. Let the roots be 1, - -+, x,. Then |ay| = 21 - - - z,,, and we want to
maximize this product subject to the constraint that the sum of
the roots is S. Using the proof in this chapter of the arithmetic
mean - geometric mean inequality, the maximum value of the
product occurs when all the roots are equal, say they all equal r.
In this case, S = nr so r = S/n, the polynomial is (x — S/n)",
and the maximal value of |ay| is (S/n)™.

. Using the preceding problem, the polynomial is (x — (n+1)/n)",
and the maximal value of |ag| is (14 1/n)". The limiting value is
e.

. Since x and y are non-negative, so is xy = A. This shows 0 < A.
For the other condition, observe that xy < (x +)?/4 if and only
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if 4ry < (z+y)?, and that holds if and only if 0 < (z +y)? — 4xy.
But this last identically equals 22 — 2zy + 32, a perfect square.
This shows that zy < (z + y)?/4 and so A < P?/16.
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